您好,登錄后才能下訂單哦!
TFLearn提供了ImageDataGenerator類來實現數據增強。下面是一個簡單的示例代碼,演示了如何在TFLearn中實現數據增強:
from __future__ import division, print_function, absolute_import
import tflearn
from tflearn.data_preprocessing import ImagePreprocessing
from tflearn.data_augmentation import ImageAugmentation
# Load path/class_id image file:
dataset_file = 'path/to/dataset_file.txt'
# Build the preloader array, resize images to 227x227
from tflearn.data_utils import build_image_dataset_from_dir
build_image_dataset_from_dir('path/to/data/', dataset_file, resize=(227, 227), convert_gray=False, filetypes=['.jpg', '.png'], categorical_Y=True)
# Image transformations
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
img_aug = ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_rotation(max_angle=25.)
# Define the network
network = tflearn.input_data(shape=[None, 227, 227, 3],
data_preprocessing=img_prep,
data_augmentation=img_aug)
network = tflearn.conv_2d(network, 64, 3, activation='relu')
network = tflearn.max_pool_2d(network, 2)
network = tflearn.local_response_normalization(network)
network = tflearn.conv_2d(network, 128, 3, activation='relu')
network = tflearn.max_pool_2d(network, 2)
network = tflearn.local_response_normalization(network)
network = tflearn.fully_connected(network, 512, activation='relu')
network = tflearn.dropout(network, 0.5)
network = tflearn.fully_connected(network, 2, activation='softmax')
# Training
network = tflearn.regression(network, optimizer='adam',
loss='categorical_crossentropy',
learning_rate=0.001)
# Train using classifier
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit(X, Y, n_epoch=50, validation_set=0.1, shuffle=True, show_metric=True, batch_size=64, snapshot_step=200, snapshot_epoch=False, run_id='convnet_mnist')
在上面的示例中,我們首先定義了ImageDataGenerator類的實例img_aug,然后將其作為參數傳遞給input_data函數。接下來,我們定義了一個簡單的神經網絡,并使用fit方法對數據進行訓練。
通過使用ImageDataGenerator類,我們可以很容易地實現數據增強,從而提升模型的泛化能力。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。