您好,登錄后才能下訂單哦!
在DeepLearning4j中,使用循環神經網絡(RNN)進行時間序列預測的步驟如下:
import org.datavec.api.records.reader.impl.csv.CSVSequenceRecordReader;
import org.datavec.api.split.NumberedFileInputSplit;
import org.deeplearning4j.datasets.datavec.SequenceRecordReaderDataSetIterator;
import org.deeplearning4j.nn.conf.BackpropType;
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
import org.deeplearning4j.nn.conf.GradientNormalization;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.GravesLSTM;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.util.ModelSerializer;
int miniBatchSize = 32;
int numPossibleLabels = 10; // 標簽數量
int numExamples = 100; // 樣本數量
int numFeatures = 3; // 特征數量
CSVSequenceRecordReader trainFeatures = new CSVSequenceRecordReader(0, ",");
trainFeatures.initialize(new NumberedFileInputSplit("path/to/train_features_%d.csv", 0, numExamples - 1));
SequenceRecordReaderDataSetIterator trainData = new SequenceRecordReaderDataSetIterator(trainFeatures, null, miniBatchSize, numPossibleLabels, false);
CSVSequenceRecordReader testFeatures = new CSVSequenceRecordReader(0, ",");
testFeatures.initialize(new NumberedFileInputSplit("path/to/test_features_%d.csv", numExamples, numExamples + numExamples - 1));
SequenceRecordReaderDataSetIterator testData = new SequenceRecordReaderDataSetIterator(testFeatures, null, miniBatchSize, numPossibleLabels, false);
ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(123)
.updater(new RmsProp(0.001))
.weightInit(WeightInit.XAVIER)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.gradientNormalizationThreshold(10)
.backpropType(BackpropType.TruncatedBPTT)
.tBPTTForwardLength(50)
.tBPTTBackwardLength(50)
.list()
.layer(0, new GravesLSTM.Builder().nIn(numFeatures).nOut(200).activation(Activation.TANH).build())
.layer(1, new GravesLSTM.Builder().nIn(200).nOut(200).activation(Activation.TANH).build())
.layer(2, new OutputLayer.Builder().nIn(200).nOut(numPossibleLabels).activation(Activation.SOFTMAX).lossFunction(LossFunctions.LossFunction.MCXENT).build())
.pretrain(false)
.backprop(true)
.build();
MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener(20));
int numEpochs = 50;
for (int i = 0; i < numEpochs; i++) {
model.fit(trainData);
}
Evaluation evaluation = new Evaluation(numPossibleLabels);
while (testData.hasNext()) {
DataSet test = testData.next();
INDArray output = model.output(test.getFeatures(), false);
evaluation.evalTimeSeries(test.getLabels(), output);
}
System.out.println(evaluation.stats());
File locationToSave = new File("path/to/save/model.zip");
ModelSerializer.writeModel(model, locationToSave, true);
這樣就完成了在DeepLearning4j中使用循環神經網絡進行時間序列預測的過程。您可以根據自己的數據集和需求進行相應的調整和優化。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。