您好,登錄后才能下訂單哦!
本文小編為大家詳細介紹“Python怎么使用tf-idf算法計算文檔關鍵字權重并生成詞云”,內容詳細,步驟清晰,細節處理妥當,希望這篇“Python怎么使用tf-idf算法計算文檔關鍵字權重并生成詞云”文章能幫助大家解決疑惑,下面跟著小編的思路慢慢深入,一起來學習新知識吧。
代碼如下:
注意需要安裝pip install sklean
;
from re import split from jieba.posseg import dt from sklearn.feature_extraction.text import TfidfVectorizer from collections import Counter from time import time import jieba #pip install sklean FLAGS = set('a an b f i j l n nr nrfg nrt ns nt nz s t v vi vn z eng'.split()) def cut(text): for sentence in split('[^a-zA-Z0-9\u4e00-\u9fa5]+', text.strip()): for w in dt.cut(sentence): if len(w.word) > 2 and w.flag in FLAGS: yield w.word class TFIDF: def __init__(self, idf): self.idf = idf @classmethod def train(cls, texts): model = TfidfVectorizer(tokenizer=cut) model.fit(texts) idf = {w: model.idf_[i] for w, i in model.vocabulary_.items()} return cls(idf) def get_idf(self, word): return self.idf.get(word, max(self.idf.values())) def extract(self, text, top_n=10): counter = Counter() for w in cut(text): counter[w] += self.get_idf(w) #return [i[0:2] for i in counter.most_common(top_n)] return [i[0] for i in counter.most_common(top_n)] if __name__ == '__main__': t0 = time() with open('./nlp-homework.txt', encoding='utf-8')as f: _texts = f.read().strip().split('\n') # print(_texts) tfidf = TFIDF.train(_texts) # print(_texts) for _text in _texts: seq_list=jieba.cut(_text,cut_all=True) #全模式 # seq_list=jieba.cut(_text,cut_all=False) #精確模式 # seq_list=jieba.cut_for_search(_text,) #搜索引擎模式 # print(list(seq_list)) print(tfidf.extract(_text)) with open('./resultciyun.txt','a+', encoding='utf-8') as g: for i in tfidf.extract(_text): g.write(str(i) + " ") print(time() - t0)
代碼如下:
注意需要安裝pip install wordcloud
;
以及為了保證中文字體正常顯示,需要下載SimSun.ttf
字體,并且將這個字體包也放在和程序相同的目錄下;
from wordcloud import WordCloud filename = "resultciyun.txt" with open(filename) as f: resultciyun = f.read() wordcloud = WordCloud(font_path="simsun.ttf").generate(resultciyun) # %pylab inline import matplotlib.pyplot as plt plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.show()
讀到這里,這篇“Python怎么使用tf-idf算法計算文檔關鍵字權重并生成詞云”文章已經介紹完畢,想要掌握這篇文章的知識點還需要大家自己動手實踐使用過才能領會,如果想了解更多相關內容的文章,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。