您好,登錄后才能下訂單哦!
這篇文章主要介紹“Java Lambda表達式的原理是什么”的相關知識,小編通過實際案例向大家展示操作過程,操作方法簡單快捷,實用性強,希望這篇“Java Lambda表達式的原理是什么”文章能幫助大家解決問題。
先從一個例子開始:
public class LambdaTest { public static void print(String name, Print print) { print.print(name); } public static void main(String[] args) { String name = "Chen Longfei"; String prefix = "hello, "; print(name, (t) -> System.out.println(t)); // 與上一行不同的是,Lambda表達式的函數體中引用了外部變量‘prefix' print(name, (t) -> System.out.println(prefix + t)); } } @FunctionalInterface interface Print { void print(String name); }
例子很簡單,定義了一個函數式接口Print ,main方法中有兩處代碼以Lambda表達式的方式實現了print接口,分別打印出不帶前綴與帶前綴的名字。
運行程序,打印結果如下:
Chen Longfei
hello, Chen Longfei
而(t) -> System.out.println(t)與(t) -> System.out.println(prefix + t))之類的Lambda表達式到底是怎樣被編譯與調用的呢?
我們知道,編譯器編譯Java代碼時經常在背地里“搞鬼”比如類的全限定名的補全,泛型的類型推斷等,編譯器耍的這些小聰明可以幫助我們寫出更優雅、簡潔、高效的代碼。鑒于編譯器的一貫作風,我們有理由懷疑,新穎而另類的Lambda表達式在編譯時很可能會被改造過了。
下面通過javap反編譯class文件一探究竟。 javap是jdk自帶的一個字節碼查看工具及反編譯工具: 用法: javap 其中, 可能的選項包括:
-help --help -? 輸出此用法消息
-version 版本信息
-v -verbose 輸出附加信息
-l 輸出行號和本地變量表
-public 僅顯示公共類和成員
-protected 顯示受保護的/公共類和成員
-package 顯示程序包/受保護的/公共類
和成員 (默認)
-p -private 顯示所有類和成員
-c 對代碼進行反匯編
-s 輸出內部類型簽名
-sysinfo 顯示正在處理的類的
系統信息 (路徑, 大小, 日期, MD5 散列)
-constants 顯示最終常量
-classpath <path> 指定查找用戶類文件的位置
-cp <path> 指定查找用戶類文件的位置
-bootclasspath <path> 覆蓋引導類文件的位置
結果如下:
javap -p Print.class
interface test.Print { public abstract void print(java.lang.String); }
// Compiled from "LambdaTest.java" public class test.LambdaTest { public test.LambdaTest(); public static void print(java.lang.String, test.Print); public static void main(java.lang.String[]); private static void Lambda$main$1(java.lang.String); private static void Lambda$main$0(java.lang.String, java.lang.String); }
可見,編譯器對Print接口的改造比較小,只是為print方法添加了public abstract關鍵字,而對LambdaTest的變化就比較大了,添加了兩個靜態方法:
private static void Lambda$main$1(java.lang.String); private static void Lambda$main$0(java.lang.String, java.lang.String);
到底有什么關聯呢?使用javap -p -v -c LambdaTest.class查看更加詳細的反編譯結果:
public class test.LambdaTest minor version: 0 major version: 52 flags: ACC_PUBLIC, ACC_SUPER Constant pool: #1 = Methodref #15.#30 // java/lang/Object."<init>":()V #2 = InterfaceMethodref #31.#32 // test/Print.print:(Ljava/lang/String;)V #3 = String #33 // Chen Longfei #4 = String #34 // hello, #5 = InvokeDynamic #0:#39 // #0:print:(Ljava/lang/String;)Ltest/Print; #6 = Methodref #14.#40 // test/LambdaTest.print:(Ljava/lang/String;Ltest/Print;)V #7 = InvokeDynamic #1:#42 // #1:print:()Ltest/Print; #8 = Fieldref #43.#44 // java/lang/System.out:Ljava/io/PrintStream; #9 = Methodref #45.#46 // java/io/PrintStream.println:(Ljava/lang/String;)V #10 = Class #47 // java/lang/StringBuilder #11 = Methodref #10.#30 // java/lang/StringBuilder."<init>":()V #12 = Methodref #10.#48 // java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder ; #13 = Methodref #10.#49 // java/lang/StringBuilder.toString:()Ljava/lang/String; #14 = Class #50 // test/LambdaTest #15 = Class #51 // java/lang/Object #16 = Utf8 <init> #17 = Utf8 ()V #18 = Utf8 Code #19 = Utf8 LineNumberTable #20 = Utf8 print #21 = Utf8 (Ljava/lang/String;Ltest/Print;)V #22 = Utf8 main #23 = Utf8 ([Ljava/lang/String;)V #24 = Utf8 Lambda$main$1 #25 = Utf8 (Ljava/lang/String;)V #26 = Utf8 Lambda$main$0 #27 = Utf8 (Ljava/lang/String;Ljava/lang/String;)V #28 = Utf8 SourceFile #29 = Utf8 LambdaTest.java #30 = NameAndType #16:#17 // "<init>":()V #31 = Class #52 // test/Print #32 = NameAndType #20:#25 // print:(Ljava/lang/String;)V #33 = Utf8 Chen Longfei #34 = Utf8 hello, #35 = Utf8 BootstrapMethods #36 = MethodHandle #6:#53 // invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/inv oke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/M ethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite; #37 = MethodType #25 // (Ljava/lang/String;)V #38 = MethodHandle #6:#54 // invokestatic test/LambdaTest.Lambda$main$0:(Ljava/lang/String;Ljava/lang/St ring;)V #39 = NameAndType #20:#55 // print:(Ljava/lang/String;)Ltest/Print; #40 = NameAndType #20:#21 // print:(Ljava/lang/String;Ltest/Print;)V #41 = MethodHandle #6:#56 // invokestatic test/LambdaTest.Lambda$main$1:(Ljava/lang/String;)V #42 = NameAndType #20:#57 // print:()Ltest/Print; #43 = Class #58 // java/lang/System #44 = NameAndType #59:#60 // out:Ljava/io/PrintStream; #45 = Class #61 // java/io/PrintStream #46 = NameAndType #62:#25 // println:(Ljava/lang/String;)V #47 = Utf8 java/lang/StringBuilder #48 = NameAndType #63:#64 // append:(Ljava/lang/String;)Ljava/lang/StringBuilder; #49 = NameAndType #65:#66 // toString:()Ljava/lang/String; #50 = Utf8 test/LambdaTest #51 = Utf8 java/lang/Object #52 = Utf8 test/Print #53 = Methodref #67.#68 // java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHan dles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;L java/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite; #54 = Methodref #14.#69 // test/LambdaTest.Lambda$main$0:(Ljava/lang/String;Ljava/lang/String;)V #55 = Utf8 (Ljava/lang/String;)Ltest/Print; #56 = Methodref #14.#70 // test/LambdaTest.Lambda$main$1:(Ljava/lang/String;)V #57 = Utf8 ()Ltest/Print; #58 = Utf8 java/lang/System #59 = Utf8 out #60 = Utf8 Ljava/io/PrintStream; #61 = Utf8 java/io/PrintStream #62 = Utf8 println #63 = Utf8 append #64 = Utf8 (Ljava/lang/String;)Ljava/lang/StringBuilder; #65 = Utf8 toString #66 = Utf8 ()Ljava/lang/String; #67 = Class #71 // java/lang/invoke/LambdaMetafactory #68 = NameAndType #72:#76 // metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava /lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/ lang/invoke/CallSite; #69 = NameAndType #26:#27 // Lambda$main$0:(Ljava/lang/String;Ljava/lang/String;)V #70 = NameAndType #24:#25 // Lambda$main$1:(Ljava/lang/String;)V #71 = Utf8 java/lang/invoke/LambdaMetafactory #72 = Utf8 metafactory #73 = Class #78 // java/lang/invoke/MethodHandles$Lookup #74 = Utf8 Lookup #75 = Utf8 InnerClasses #76 = Utf8 (Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/ lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite; #77 = Class #79 // java/lang/invoke/MethodHandles #78 = Utf8 java/lang/invoke/MethodHandles$Lookup #79 = Utf8 java/lang/invoke/MethodHandles { public test.LambdaTest(); descriptor: ()V flags: ACC_PUBLIC Code: stack=1, locals=1, args_size=1 0: aload_0 1: invokespecial #1 // Method java/lang/Object."<init>":()V 4: return LineNumberTable: line 6: 0 public static void print(java.lang.String, test.Print); descriptor: (Ljava/lang/String;Ltest/Print;)V flags: ACC_PUBLIC, ACC_STATIC Code: stack=2, locals=2, args_size=2 0: aload_1 1: aload_0 2: invokeinterface #2, 2 // InterfaceMethod test/Print.print:(Ljava/lang/String;)V 7: return LineNumberTable: line 9: 0 line 10: 7 public static void main(java.lang.String[]); descriptor: ([Ljava/lang/String;)V flags: ACC_PUBLIC, ACC_STATIC Code: stack=2, locals=3, args_size=1 0: ldc #3 // String Chen Longfei 2: astore_1 3: ldc #4 // String hello, 5: astore_2 6: aload_1 7: aload_2 8: invokedynamic #5, 0 // InvokeDynamic #0:print:(Ljava/lang/String;)Ltest/Print; 13: invokestatic #6 // Method print:(Ljava/lang/String;Ltest/Print;)V 16: aload_1 17: invokedynamic #7, 0 // InvokeDynamic #1:print:()Ltest/Print; 22: invokestatic #6 // Method print:(Ljava/lang/String;Ltest/Print;)V 25: return LineNumberTable: line 13: 0 line 14: 3 line 16: 6 line 18: 16 line 19: 25 private static void Lambda$main$1(java.lang.String); descriptor: (Ljava/lang/String;)V flags: ACC_PRIVATE, ACC_STATIC, ACC_SYNTHETIC Code: stack=2, locals=1, args_size=1 0: getstatic #8 // Field java/lang/System.out:Ljava/io/PrintStream; 3: aload_0 4: invokevirtual #9 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 7: return LineNumberTable: line 18: 0 private static void Lambda$main$0(java.lang.String, java.lang.String); descriptor: (Ljava/lang/String;Ljava/lang/String;)V flags: ACC_PRIVATE, ACC_STATIC, ACC_SYNTHETIC Code: stack=3, locals=2, args_size=2 0: getstatic #8 // Field java/lang/System.out:Ljava/io/PrintStream; 3: new #10 // class java/lang/StringBuilder 6: dup 7: invokespecial #11 // Method java/lang/StringBuilder."<init>":()V 10: aload_0 11: invokevirtual #12 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder; 14: aload_1 15: invokevirtual #12 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder; 18: invokevirtual #13 // Method java/lang/StringBuilder.toString:()Ljava/lang/String; 21: invokevirtual #9 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 24: return LineNumberTable: line 16: 0 } SourceFile: "LambdaTest.java" InnerClasses: public static final #74= #73 of #77; //Lookup=class java/lang/invoke/MethodHandles$Lookup of class java/lang/invoke/MethodHandles BootstrapMethods: 0: #36 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:( Ljava/lang/invoke/MethodHandles$Lookup; Ljava/lang/String; Ljava/lang/invoke/MethodType; Ljava/lang/invoke/MethodType; Ljava/lang/invoke/MethodHandle; Ljava/lang/invoke/MethodType;) Ljava/lang/invoke/CallSite; Method arguments: #37 (Ljava/lang/String;)V #38 invokestatic test/LambdaTest.Lambda$main$0:(Ljava/lang/String;Ljava/lang/String;)V #37 (Ljava/lang/String;)V 1: #36 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:( Ljava/lang/invoke/MethodHandles$Lookup; Ljava/lang/String; Ljava/lang/invoke/MethodType; Ljava/lang/invoke/MethodType; Ljava/lang/invoke/MethodHandle; Ljava/lang/invoke/MethodType;) Ljava/lang/invoke/CallSite; Method arguments: #37 (Ljava/lang/String;)V #41 invokestatic test/LambdaTest.Lambda$main$1:(Ljava/lang/String;)V #37 (Ljava/lang/String;)V
這個 class 文件展示了三個主要部分:
常量池
構造方法和 main、print、Lambdamain0、Lambdamain1方法
Lambda表達式生成的內部類。
重點看下main方法的實現:
public static void main(java.lang.String[]); descriptor: ([Ljava/lang/String;)V flags: ACC_PUBLIC, ACC_STATIC Code: stack=2, locals=3, args_size=1 // 將字符串常量"Chen Longfei"從常量池壓棧到操作數棧 0: ldc #3 // String Chen Longfei // 將棧頂引用型數值存入第二個本地變,即 String name = "Chen Longfei" 2: astore_1 // 將字符串常量"hello,"從常量池壓棧到操作數棧 3: ldc #4 // String hello, // 將棧頂引用型數值存入第三個本地變量, 即 String prefix = "hello, " 5: astore_2 //將第二個引用類型本地變量推送至棧頂,即 name 6: aload_1 //將第三個引用類型本地變量推送至棧頂,即 prefix 7: aload_2 //通過invokedynamic指令創建Print接口的實匿名內部類,實現 (t) -> System.out.println(prefix + t) 8: invokedynamic #5, 0 // InvokeDynamic #0:print:(Ljava/lang/String;)Ltest/Print; //調用靜態方法print 13: invokestatic #6 // Method print:(Ljava/lang/String;Ltest/Print;)V //將第二個引用類型本地變量推送至棧頂,即 name 16: aload_1 //通過invokedynamic指令創建Print接口的匿名內部類,實現 (t) -> System.out.println(t) 17: invokedynamic #7, 0 // InvokeDynamic #1:print:()Ltest/Print; //調用靜態方法print 22: invokestatic #6 // Method print:(Ljava/lang/String;Ltest/Print;)V 25: return ……
兩個匿名內部類是通過BootstrapMethods方法創建的:
匿名內部類
InnerClasses: public static final #74= #73 of #77; //Lookup=class java/lang/invoke/MethodHandles$Lookup of class java/lang/invoke/MethodHandles BootstrapMethods: //調用靜態工廠LambdaMetafactory.metafactory創建匿名內部類1。實現了 (t) -> System.out.println(prefix + t) 0: #36 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:( Ljava/lang/invoke/MethodHandles$Lookup; Ljava/lang/String; Ljava/lang/invoke/MethodType; Ljava/lang/invoke/MethodType; Ljava/lang/invoke/MethodHandle; Ljava/lang/invoke/MethodType;) Ljava/lang/invoke/CallSite; Method arguments: #37 (Ljava/lang/String;)V //該類會調用靜態方法LambdaTest.Lambda$main$0 #38 invokestatic test/LambdaTest.Lambda$main$0:(Ljava/lang/String;Ljava/lang/String;)V #37 (Ljava/lang/String;)V //調用靜態工廠LambdaMetafactory.metafactory創建匿名內部類2,實現了 (t) -> System.out.println(t) 1: #36 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:( Ljava/lang/invoke/MethodHandles$Lookup; Ljava/lang/String; Ljava/lang/invoke/MethodType; Ljava/lang/invoke/MethodType; Ljava/lang/invoke/MethodHandle; Ljava/lang/invoke/MethodType;) Ljava/lang/invoke/CallSite; Method arguments: #37 (Ljava/lang/String;)V //該類會調用靜態方法LambdaTest.Lambda$main$1 #41 invokestatic test/LambdaTest.Lambda$main$1:(Ljava/lang/String;)V #37 (Ljava/lang/String;)V
可以在運行時加上-Djdk.internal.Lambda.dumpProxyClasses=%PATH%,加上這個參數后,運行時,會將生成的內部類class輸出到%PATH%路徑下。
javap -p -c 反編譯兩個文件:
//print(name, (t) -> System.out.println(t))的實例
final class test.LambdaTest$$Lambda$1 implements test.Print { private test.LambdaTest$$Lambda$1(); //構造方法 Code: 0: aload_0 1: invokespecial #10 // Method java/lang/Object."<init>":()V 4: return //實現test.Print接口方法 public void print(java.lang.String); Code: 0: aload_1 //調用靜態方法LambdaTest.Lambda$1 1: invokestatic #18 // Method test/LambdaTest.Lambda$1:(Ljava/lang/String;)V 4: return } //print(name, (t) -> System.out.println(prefix + t))的實例 final class test.LambdaTest$$Lambda$2 implements test.Print { private final java.lang.String arg$1; private test.LambdaTest$$Lambda$2(java.lang.String); Code: 0: aload_0 1: invokespecial #13 // Method java/lang/Object."<init>":()V 4: aload_0 5: aload_1 //final變量arg$1由構造方法傳入 6: putfield #15 // Field arg$1:Ljava/lang/String; 9: return //該方法返回一個 LambdaTest$$Lambda$2實例 private static test.Print get$Lambda(java.lang.String); Code: 0: new #2 // class test/LambdaTest$$Lambda$2 3: dup 4: aload_0 5: invokespecial #19 // Method "<init>":(Ljava/lang/String;)V 8: areturn //實現test.Print接口方法 public void print(java.lang.String); Code: 0: aload_0 1: getfield #15 // Field arg$1:Ljava/lang/String; 4: aload_1 //調用靜態方法LambdaTest.Lambda$0 5: invokestatic #27 // Method test/LambdaTest.Lambda$0:(Ljava/lang/String;Ljava/lang/String;)V 8: return }
對比兩個實例,可以發現,由于表達式print(name, (t) -> System.out.println(prefix + t))引用了局部變量prefix,LambdaTestKaTeX parse error: Can't use function '$' in math mode at position 7: Lambda$?2類 多了一個final參數:…Lambda$2引用了同一份變量,該變量雖然在代碼層面獨立存儲于兩個類當中,但是在邏輯上具有一致性,所以匿名內部類中加上了final關鍵字,而外部類中雖然沒有為prefix顯式地添加final,但是在被Lambda表達式引用后,該變量就自動隱含了final語意(再次更改會報錯)。
通過上面的例子可以發現,Lambda表達式由虛擬機指令InvokeDynamic實現方法調用。
方法調用不等同于方法執行,方法調用階段的唯一任務就是確定被調用方法的版本(即確定具體調用那一個方法),不涉及方法內部具體運行。
方法調用不等同于方法執行,方法調用階段的唯一任務就是確定被調用方法的版本(即確定具體調用那一個方法),不涉及方法內部具體運行。
java虛擬機中提供了5條方法調用的字節碼指令:
invokestatic:調用靜態方法
invokespecial:調用實例構造器方法、私有方法、父類方法
invokevirtual:調用虛方法。
invokeinterface:調用接口方法,在運行時再確定一個實現該接口的對象
invokedynamic:運行時動態解析出調用的方法,然后去執行該方法。
invokeDynamic是 java 7 引入的一條新的虛擬機指令,這是自 1.0 以來第一次引入新的虛擬機指令。到了 java 8 這條指令才第一次在 java 應用,用在 Lambda 表達式中。invokeDynamic與其他invoke指令不同的是它允許由應用級的代碼來決定方法解析。
根據JVM規范的規定,invokeDynamic的操作碼是186(0xBA),格式是:
invokedynamic indexbyte1 indexbyte2 0 0
invokeDynamic指令有四個操作數,前兩個操作數構成一個索引[ (indexbyte1 << 8) | indexbyte2 ],指向類的常量池,后兩個操作數保留,必須是0。
查看上例中LambdaTest類的反編譯結果,第一處Lambda表達式
print(name, (t) -> System.out.println(t));
對應的指令為:
17: invokedynamic #7, 0 // InvokeDynamic #1:print:()Ltest/Print;
常量池中#7對應的常量為:
#7 = InvokeDynamic #1:#42 // #1:print:()Ltest/Print;
其類型為CONSTANT_InvokeDynamic_info,CONSTANT_InvokeDynamic_info結構是Java7新引入class文件的,其用途就是給invokeDynamic指令指定啟動方法(bootstrap method)、調用點call site()等信息, 實際上是個 MethodHandle(方法句柄)對象。
#1代表BootstrapMethods表中的索引,即
BootstrapMethods:
//第一個
0: #36 ……//第二個
1: #36 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(
Ljava/lang/invoke/MethodHandles$Lookup;
Ljava/lang/String;
Ljava/lang/invoke/MethodType;
Ljava/lang/invoke/MethodType;
Ljava/lang/invoke/MethodHandle;
Ljava/lang/invoke/MethodType;)
Ljava/lang/invoke/CallSite;
Method arguments:# 37 (Ljava/lang/String;)V
# 41 invokestatic test/LambdaTest.Lambda$main$1:(Ljava/lang/String;)V
# 37 (Ljava/lang/String;)V
也就是說,最終調用的是java.lang.invoke.LambdaMetafactory類的靜態方法metafactory()。
為了更深入的了解invokeDynamic,先來看幾個術語:
dynamic call site
程序中出現Lambda的地方都被稱作dynamic call site,CallSite 就是一個 MethodHandle(方法句柄)的 holder。方法句柄指向一個調用點真正執行的方法。
bootstrap method
java里對所有Lambda的有統一的bootstrap method(LambdaMetafactory.metafactory),bootstrap運行期動態生成了匿名類,將其與CallSite綁定,得到了一個獲取匿名類實例的call site object
call site object
call site object持有MethodHandle的引用作為它的target,它是bootstrap method方法成功調用后的結果,將會與 dynamic call site永久綁定。call site object的target會被JVM執行,就如同執行一條invokevirtual指令,其所需的參數也會被壓入operand stack。最后會得一個實現了functional interface的對象。
InvokeDynamic 首先需要生成一個 CallSite(調用點對象),CallSite 是由 bootstrap method 返回,也就是調LambdaMetafactory.metafactory方法。
public static CallSite metafactory(MethodHandles.Lookup caller, String invokedName, MethodType invokedType, MethodType samMethodType, MethodHandle implMethod, MethodType instantiatedMethodType) throws LambdaConversionException { AbstractValidatingLambdaMetafactory mf; mf = new InnerClassLambdaMetafactory(caller, invokedType, invokedName, samMethodType, implMethod, instantiatedMethodType, false, EMPTY_CLASS_ARRAY, EMPTY_MT_ARRAY); mf.validateMetafactoryArgs(); return mf.buildCallSite(); }
前三個參數是固定的,由VM自動壓棧:
MethodHandles.Lookup caller代表InvokeDynamic 指令所在的類的上下文(在上例中就是LambdaTest),可以通過 Lookup#lookupClass()獲取這個類
String invokedName表示要實現的方法名(在上例中就是Print接口的方法名“print”)
MethodType invokedType call site object所持有的MethodHandle需要的參數和返回類型(signature)
接下來就是附加參數,這些參數是靈活的,由Bootstrap methods表提供:
MethodType samMethodType表示要實現functional interface里面抽象方法的類型
MethodHandle implMethod表示編譯器給生成的 desugar 方法,是一個 MethodHandle
MethodType instantiatedMethodType即運行時的類型,因為方法定義可能是泛型,傳入時可能是具體類型String之類的,要做類型校驗強轉等等
LambdaMetafactory.metafactory 方法會創建一個VM Anonymous Class,這個類是通過 ASM 編織字節碼在內存中生成的,然后直接通過 UNSAFE 直接加載而不會寫到文件里。VM Anonymous Class 是真正意義上的匿名類,不需要 ClassLoader 加載,沒有類名,當然也沒其他權限管理等操作,這意味著效率更高(不必要的鎖操作)、GC 更方便(沒有 ClassLoader)。
要讓invokedynamic正常運行,一個核心的概念就是方法句柄(method handle)。它代表了一個可以從invokedynamic調用點進行調用的方法。每個invokedynamic指令都會與一個特定的方法關聯(也就是bootstrap method或BSM)。當編譯器遇到invokedynamic指令的時候,BSM會被調用,會返回一個包含了方法句柄的對象,這個對象表明了調用點要實際執行哪個方法。
Java 7 API中加入了java.lang.invoke.MethodHandle(及其子類),通過它們來代表invokedynamic指向的方法。 一個Java方法可以視為由四個基本內容所構成:
名稱
簽名(包含返回類型)
定義它的類
實現方法的字節碼
這意味著如果要引用某個方法,我們需要有一種有效的方式來表示方法簽名(而不是反射中強制使用的令人討厭的Class<?>[] hack方式)。
方法句柄首先需要的一個表達方法簽名的方式,以便于查找。在Java 7引入的Method Handles API中,這個角色是由java.lang.invoke.MethodType類來完成的,它使用一個不可變的實例來代表簽名。要獲取MethodType,我們可以使用methodType()工廠方法。這是一個參數可變的方法,以class對象作為參數。 第一個參數所使用的class對象,對應著簽名的返回類型;剩余參數中所使用的class對象,對應著簽名中方法參數的類型。例如:
//toString()的簽名 MethodType mtToString = MethodType.methodType(String.class); // setter方法的簽名 MethodType mtSetter = MethodType.methodType(void.class, Object.class); // Comparator中compare()方法的簽名 MethodType mtStringComparator = MethodType.methodType(int.class, String.class, String.class);
現在我們就可以使用MethodType,再組合方法名稱以及定義方法的類來查找方法句柄。要實現這一點,我們需要調用靜態的MethodHandles.lookup()方法。這樣的話,會給我們一個“查找上下文(lookup context)”,這個上下文基于當前正在執行的方法(也就是調用lookup()的方法)的訪問權限。
查找上下文對象有一些以“find”開頭的方法,例如,findVirtual()、findConstructor()、findStatic()等。這些方法將會返回實際的方法句柄,需要注意的是,只有在創建查找上下文的方法能夠訪問(調用)被請求方法的情況下,才會返回句柄。這與反射不同,我們沒有辦法繞過訪問控制。換句話說,方法句柄中并沒有與setAccessible()對應的方法。例如
public MethodHandle getToStringMH() { MethodHandle mh = null; MethodType mt = MethodType.methodType(String.class); MethodHandles.Lookup lk = MethodHandles.lookup(); try { mh = lk.findVirtual(getClass(), "toString", mt); } catch (NoSuchMethodException | IllegalAccessException mhx) { throw (AssertionError) new AssertionError().initCause(mhx); } return mh; }
MethodHandle中有兩個方法能夠觸發對方法句柄的調用,那就是invoke()和invokeExact()。這兩個方法都是以接收者(receiver)和調用變量作為參數,所以它們的簽名為:
public final Object invoke(Object... args) throws Throwable; public final Object invokeExact(Object... args) throws Throwable;
兩者的區別在于,invokeExact()在調用方法句柄時會試圖嚴格地直接匹配所提供的變量。而invoke()與之不同,在需要的時候,invoke()能夠稍微調整一下方法的變量。invoke()會執行一個asType()轉換,它會根據如下的這組規則來進行變量的轉換:
如果需要的話,原始類型會進行裝箱操作
如果需要的話,裝箱后的原始類型會進行拆箱操作
如果必要的話,原始類型會進行擴展
void返回類型會轉換為0(對于返回原始類型的情況),而對于預期得到引用類型的返回值的地方,將會轉換為null
null值會被視為正確的,不管靜態類型是什么都可以進行傳遞
接下來,我們看一下考慮上述規則的簡單調用樣例:
Object rcvr = "a"; try { MethodType mt = MethodType.methodType(int.class); MethodHandles.Lookup l = MethodHandles.lookup(); MethodHandle mh = l.findVirtual(rcvr.getClass(), "hashCode", mt); int ret; try { ret = (int) mh.invoke(rcvr); System.out.println(ret); } catch (Throwable t) { t.printStackTrace(); } } catch (IllegalArgumentException | NoSuchMethodException | SecurityException e) { e.printStackTrace(); } catch (IllegalAccessException x) { x.printStackTrace(); }
上面的代碼調用了Object的hashcode()方法,看到這里,你肯定會說這不就是 Java 的反射嗎?
確實,MethodHandl和 Reflection實現的功能有太多相似的地方,都是運行時解析方法調用,理解方法句柄的一種方式就是將其視為以安全、現代的方式來實現反射的核心功能,在這個過程會盡可能地保證類型的安全。 但是,究其本質,兩者之間還是有區別的: Reflection中的java.lang.reflect.Method對象遠比MethodHandl機制中的java.lang.invoke.MethodHandle`對象所包含的信息來得多。前者是方法在Java一端的全面映像,包含了方法的簽名、描述符以及方法屬性表中各種屬性的Java端表示方式,還包含有執行權限等的運行期信息。而后者僅僅包含著與執行該方法相關的信息。用開發人員通俗的話來講,Reflection是重量級,而MethodHandle是輕量級。
從性能角度上說,MethodHandle 要比反射快很多,因為訪問檢查在創建的時候就已經完成了,而不是像反射一樣等到運行時候才檢查
Reflection是在模擬Java代碼層次的方法調用,而MethodHandle是在模擬字節碼層次的方法調用。 MethodHandle 是結合 invokedynamic 指令一起為動態語言服務的,也就是說MethodHandle (更準確的來說是其設計理念)是服務于所有運行在JVM之上的語言,而 Relection 則只是適用 Java 語言本身。
關于“Java Lambda表達式的原理是什么”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業相關的知識,可以關注億速云行業資訊頻道,小編每天都會為大家更新不同的知識點。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。