您好,登錄后才能下訂單哦!
今天小編給大家分享一下Spring Boot怎么自定義監控指標的相關知識點,內容詳細,邏輯清晰,相信大部分人都還太了解這方面的知識,所以分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后有所收獲,下面我們一起來了解一下吧。
pom.xml引入相關依賴
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.olive</groupId> <artifactId>prometheus-meter-demo</artifactId> <version>0.0.1-SNAPSHOT</version> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.3.7.RELEASE</version> <relativePath /> </parent> <properties> <java.version>1.8</java.version> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> <spring-boot.version>2.3.7.RELEASE</spring-boot.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-aop</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> </dependency> <!-- Micrometer Prometheus registry --> <dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-prometheus</artifactId> </dependency> </dependencies> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-dependencies</artifactId> <version>${spring-boot.version}</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> </project>
直接使用micrometer
核心包的類進行指標定義和注冊
package com.olive.monitor; import javax.annotation.PostConstruct; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import io.micrometer.core.instrument.Counter; import io.micrometer.core.instrument.DistributionSummary; import io.micrometer.core.instrument.MeterRegistry; @Component public class NativeMetricsMontior { /** * 支付次數 */ private Counter payCount; /** * 支付金額統計 */ private DistributionSummary payAmountSum; @Autowired private MeterRegistry registry; @PostConstruct private void init() { payCount = registry.counter("pay_request_count", "payCount", "pay-count"); payAmountSum = registry.summary("pay_amount_sum", "payAmountSum", "pay-amount-sum"); } public Counter getPayCount() { return payCount; } public DistributionSummary getPayAmountSum() { return payAmountSum; } }
通過引入micrometer-registry-prometheus
包,該包結合prometheus,對micrometer進行了封裝
<dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-prometheus</artifactId> </dependency>
同樣定義兩個metrics
package com.olive.monitor; import javax.annotation.PostConstruct; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import io.prometheus.client.CollectorRegistry; import io.prometheus.client.Counter; @Component public class PrometheusMetricsMonitor { /** * 訂單發起次數 */ private Counter orderCount; /** * 金額統計 */ private Counter orderAmountSum; @Autowired private CollectorRegistry registry; @PostConstruct private void init() { orderCount = Counter.build().name("order_request_count") .help("order request count.") .labelNames("orderCount") .register(); orderAmountSum = Counter.build().name("order_amount_sum") .help("order amount sum.") .labelNames("orderAmountSum") .register(); registry.register(orderCount); registry.register(orderAmountSum); } public Counter getOrderCount() { return orderCount; } public Counter getOrderAmountSum() { return orderAmountSum; } }
prometheus 4種常用Metrics
Counter
連續增加不會減少的計數器,可以用于記錄只增不減的類型,例如:網站訪問人數,系統運行時間等。
對于Counter類型的指標,只包含一個inc()的方法,就是用于計數器+1.
一般而言,Counter類型的metric指標在冥冥中我們使用_total結束,如http_requests_total.
Gauge
可增可減的儀表盤,曲線圖
對于這類可增可減的指標,用于反應應用的當前狀態。
例如在監控主機時,主機當前空閑的內存大小,可用內存大小等等。
對于Gauge指標的對象則包含兩個主要的方法inc()和dec(),用于增加和減少計數。
Histogram
主要用來統計數據的分布情況,這是一種特殊的metrics數據類型,代表的是一種近似的百分比估算數值,統計所有離散的指標數據在各個取值區段內的次數。例如:我們想統計一段時間內http請求響應小于0.005秒、小于0.01秒、小于0.025秒的數據分布情況。那么使用Histogram采集每一次http請求的時間,同時設置bucket。
Summary
Summary和Histogram非常相似,都可以統計事件發生的次數或者大小,以及其分布情況,他們都提供了對時間的計數_count以及值的匯總_sum,也都提供了可以計算統計樣本分布情況的功能,不同之處在于Histogram可以通過histogram_quantile函數在服務器計算分位數。而Sumamry的分位數則是直接在客戶端進行定義的。因此對于分位數的計算,Summary在通過PromQL進行查詢的時候有更好的性能表現,而Histogram則會消耗更多的資源,但是相對于客戶端而言Histogram消耗的資源就更少。用哪個都行,根據實際場景自由調整即可。
定義兩個controller分別使用NativeMetricsMontior
和PrometheusMetricsMonitor
package com.olive.controller; import java.util.Random; import javax.annotation.Resource; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; import com.olive.monitor.NativeMetricsMontior; @RestController public class PayController { @Resource private NativeMetricsMontior monitor; @RequestMapping("/pay") public String pay(@RequestParam("amount") Double amount) throws Exception { // 統計支付次數 monitor.getPayCount().increment(); Random random = new Random(); //int amount = random.nextInt(100); if(amount==null) { amount = 0.0; } // 統計支付總金額 monitor.getPayAmountSum().record(amount); return "支付成功, 支付金額: " + amount; } } package com.olive.controller; import java.util.Random; import javax.annotation.Resource; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; import com.olive.monitor.PrometheusMetricsMonitor; @RestController public class OrderController { @Resource private PrometheusMetricsMonitor monitor; @RequestMapping("/order") public String order(@RequestParam("amount") Double amount) throws Exception { // 訂單總數 monitor.getOrderCount() .labels("orderCount") .inc(); Random random = new Random(); //int amount = random.nextInt(100); if(amount==null) { amount = 0.0; } // 統計訂單總金額 monitor.getOrderAmountSum() .labels("orderAmountSum") .inc(amount); return "下單成功, 訂單金額: " + amount; } }
啟動服務
訪問http://127.0.0.1:9595/actuator/prometheus
;正常看到監測數據
改變amount多次方式http://127.0.0.1:8080/order?amount=100
和http://127.0.0.1:8080/pay?amount=10
后;再訪問http://127.0.0.1:9595/actuator/prometheus
。查看監控數據
項目中按照上面說的方式進行數據埋點監控不太現實;在spring項目中基本通過AOP進行埋點監測。比如寫一個切面Aspect
;這樣的方式就非常友好。能在入口就做了數據埋點監測,無須在controller里進行代碼編寫。
package com.olive.aspect; import java.time.LocalDate; import java.util.concurrent.TimeUnit; import javax.servlet.http.HttpServletRequest; import org.aspectj.lang.ProceedingJoinPoint; import org.aspectj.lang.annotation.Around; import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.Pointcut; import org.springframework.stereotype.Component; import org.springframework.util.StringUtils; import org.springframework.web.context.request.RequestContextHolder; import org.springframework.web.context.request.ServletRequestAttributes; import io.micrometer.core.instrument.Metrics; @Aspect @Component public class PrometheusMetricsAspect { // 切入所有controller包下的請求方法 @Pointcut("execution(* com.olive.controller..*.*(..))") public void controllerPointcut() { } @Around("controllerPointcut()") public Object MetricsCollector(ProceedingJoinPoint joinPoint) throws Throwable { HttpServletRequest request = ((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getRequest(); String userId = StringUtils.hasText(request.getParameter("userId")) ? request.getParameter("userId") : "no userId"; // 獲取api url String api = request.getServletPath(); // 獲取請求方法 String method = request.getMethod(); long startTs = System.currentTimeMillis(); LocalDate now = LocalDate.now(); String[] tags = new String[10]; tags[0] = "api"; tags[1] = api; tags[2] = "method"; tags[3] = method; tags[4] = "day"; tags[5] = now.toString(); tags[6] = "userId"; tags[7] = userId; String amount = StringUtils.hasText(request.getParameter("amount")) ? request.getParameter("amount") : "0.0"; tags[8] = "amount"; tags[9] = amount; // 請求次數加1 //自定義的指標名稱:custom_http_request_all,指標包含數據 Metrics.counter("custom_http_request_all", tags).increment(); Object object = null; try { object = joinPoint.proceed(); } catch (Exception e) { //請求失敗次數加1 Metrics.counter("custom_http_request_error", tags).increment(); throw e; } finally { long endTs = System.currentTimeMillis() - startTs; //記錄請求響應時間 Metrics.timer("custom_http_request_time", tags).record(endTs, TimeUnit.MILLISECONDS); } return object; } }
編寫好切面后,重啟服務;訪問controller的接口,同樣可以進行自定義監控指標埋點
以上就是“Spring Boot怎么自定義監控指標”這篇文章的所有內容,感謝各位的閱讀!相信大家閱讀完這篇文章都有很大的收獲,小編每天都會為大家更新不同的知識,如果還想學習更多的知識,請關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。