91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

PyTorch?torch.utils.data.Dataset怎么使用

發布時間:2023-02-24 16:57:31 來源:億速云 閱讀:132 作者:iii 欄目:開發技術

本篇內容主要講解“PyTorch torch.utils.data.Dataset怎么使用”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“PyTorch torch.utils.data.Dataset怎么使用”吧!

    PyTorch torch.utils.data.Dataset 介紹與實戰案例

    一、前言

    在 PyTorch 中,提供了一個處理數據集的工具包 torch.utils.data。這里來簡單介紹這個包是什么。

    訓練模型一般都是先處理 數據的輸入問題預處理問題 。Pytorch提供了幾個有用的工具:torch.utils.data.Dataset 類和 torch.utils.data.DataLoader 類 。

    流程是先把原始數據轉變成 torch.utils.data.Dataset 類,隨后再把得到的 torch.utils.data.Dataset 類當作一個參數傳遞給 torch.utils.data.DataLoader 類,得到一個數據加載器,這個數據加載器每次可以返回一個 Batch 的數據供模型訓練使用。

    在 pytorch 中,提供了一種十分方便的數據讀取機制,即使用 torch.utils.data.DatasetDataloader 組合得到數據迭代器。在每次訓練時,利用這個迭代器輸出每一個 batch 數據,并能在輸出時對數據進行相應的預處理或數據增廣操作。

    本文我們主要介紹對 torch.utils.data.Dataset 的理解,對 Dataloader 的介紹請參考我的另一篇文章:【PyTorch】torch.utils.data.DataLoader 簡單介紹與使用

    在本文的最后將給出 torch.utils.data.DatasetDataloader 結合使用處理數據的實戰代碼。

    二、torch.utils.data.Dataset 是什么

    1. 干什么用的?

    • pytorch 提供了一個數據讀取的方法,其由兩個類構成:torch.utils.data.Dataset 和 DataLoader。

    • 如果我們要自定義自己讀取數據的方法,就需要繼承類 torch.utils.data.Dataset ,并將其封裝到DataLoader 中。

    • torch.utils.data.Dataset 是一個 類 Dataset 。通過重寫定義在該類上的方法,我們可以實現多種數據讀取及數據預處理方式。

    2. 長什么樣子?

    torch.utils.data.Dataset 的源碼:

    class Dataset(object):
        """An abstract class representing a Dataset.
    
        All other datasets should subclass it. All subclasses should override
        ``__len__``, that provides the size of the dataset, and ``__getitem__``,
        supporting integer indexing in range from 0 to len(self) exclusive.
        """
    
        def __getitem__(self, index):
            raise NotImplementedError
    
        def __len__(self):
            raise NotImplementedError
    
        def __add__(self, other):
            return ConcatDataset([self, other])

    注釋翻譯:

    表示一個數據集的抽象類。

    所有其他數據集都應該對其進行子類化。 所有子類都應該重寫提供數據集大小的 __len____getitem__ ,支持從 0 到 len(self) 獨占的整數索引。

    理解:

    就是說,Dataset 是一個 數據集 抽象類,它是其他所有數據集類的父類(所有其他數據集類都應該繼承它),繼承時需要重寫方法 __len____getitem____len__ 是提供數據集大小的方法, __getitem__ 是可以通過索引號找到數據的方法。

    三、通過繼承 torch.utils.data.Dataset 定義自己的數據集類

    torch.utils.data.Dataset 是代表自定義數據集的抽象類,我們可以定義自己的數據類抽象這個類,只需要重寫__len__和__getitem__這兩個方法就可以。

    要自定義自己的 Dataset 類,至少要重載兩個方法:__len__, __getitem__

    • __len__返回的是數據集的大小

    • __getitem__實現索引數據集中的某一個數據

    下面將簡單實現一個返回 torch.Tensor 類型的數據集:

    from torch.utils.data import Dataset
    import torch
    
    class TensorDataset(Dataset):
        # TensorDataset繼承Dataset, 重載了__init__, __getitem__, __len__
        # 實現將一組Tensor數據對封裝成Tensor數據集
        # 能夠通過index得到數據集的數據,能夠通過len,得到數據集大小
    
        def __init__(self, data_tensor, target_tensor):
            self.data_tensor = data_tensor
            self.target_tensor = target_tensor
    
        def __getitem__(self, index):
            return self.data_tensor[index], self.target_tensor[index]
    
        def __len__(self):
            return self.data_tensor.size(0)    # size(0) 返回當前張量維數的第一維
    
    # 生成數據
    data_tensor = torch.randn(4, 3)   # 4 行 3 列,服從正態分布的張量
    print(data_tensor)
    target_tensor = torch.rand(4)     # 4 個元素,服從均勻分布的張量
    print(target_tensor)
    
    # 將數據封裝成 Dataset (用 TensorDataset 類)
    tensor_dataset = TensorDataset(data_tensor, target_tensor)
    
    # 可使用索引調用數據
    print('tensor_data[0]: ', tensor_dataset[0])
    
    # 可返回數據len
    print('len os tensor_dataset: ', len(tensor_dataset))

    輸出結果:

    tensor([[ 0.8618,  0.4644, -0.5929],
            [ 0.9566, -0.9067,  1.5781],
            [ 0.3943, -0.7775,  2.0366],
            [-1.2570, -0.3859, -0.3542]])
    tensor([0.1363, 0.6545, 0.4345, 0.9928])
    tensor_data[0]:  (tensor([ 0.8618,  0.4644, -0.5929]), tensor(0.1363))
    len os tensor_dataset:  4

    四、為什么要定義自己的數據集類?

    因為我們可以通過定義自己的數據集類并重寫該類上的方法 實現多種多樣的(自定義的)數據讀取方式

    比如,我們重寫 __init__ 實現用 pd.read_csv 讀取 csv 文件:

    from torch.utils.data import Dataset
    import pandas as pd  # 這個包用來讀取CSV數據
    
    # 繼承Dataset,定義自己的數據集類 mydataset
    class mydataset(Dataset):
        def __init__(self, csv_file):   # self 參數必須,其他參數及其形式隨程序需要而不同,比如(self,*inputs)
            self.csv_data = pd.read_csv(csv_file)
        def __len__(self):
            return len(self.csv_data)
        def __getitem__(self, idx):
            data = self.csv_data.values[idx]
            return data
    
    data = mydataset('spambase.csv')
    print(data[3])
    print(len(data))

    輸出結果:

    [0.000e+00 0.000e+00 0.000e+00 0.000e+00 6.300e-01 0.000e+00 3.100e-01
     6.300e-01 3.100e-01 6.300e-01 3.100e-01 3.100e-01 3.100e-01 0.000e+00
     0.000e+00 3.100e-01 0.000e+00 0.000e+00 3.180e+00 0.000e+00 3.100e-01
     0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
     0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
     0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
     0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
     1.370e-01 0.000e+00 1.370e-01 0.000e+00 0.000e+00 3.537e+00 4.000e+01
     1.910e+02 1.000e+00]
    4601

    要點:

    • 自己定義的 dataset 類需要繼承 Dataset。

    • 需要實現必要的魔法方法:

    __init__ 方法里面進行 讀取數據文件
    __getitem__ 方法里支持通過下標訪問數據。
    __len__ 方法里返回自定義數據集的大小,方便后期遍歷。

    五、實戰:torch.utils.data.Dataset + Dataloader 實現數據集讀取和迭代

    實例 1

    數據集 spambase.csv 用的是 UCI 機器學習存儲庫里的垃圾郵件數據集,它一條數據有57個特征和1個標簽。

    import torch.utils.data as Data
    import pandas as pd  # 這個包用來讀取CSV數據
    import torch
    
    
    # 繼承Dataset,定義自己的數據集類 mydataset
    class mydataset(Data.Dataset):
        def __init__(self, csv_file):   # self 參數必須,其他參數及其形式隨程序需要而不同,比如(self,*inputs)
            data_csv = pd.DataFrame(pd.read_csv(csv_file))   # 讀數據
            self.csv_data = data_csv.drop(axis=1, columns='58', inplace=False)  # 刪除最后一列標簽
        def __len__(self):
            return len(self.csv_data)
        def __getitem__(self, idx):
            data = self.csv_data.values[idx]
            return data
    
    
    data = mydataset('spambase.csv')
    x = torch.tensor(data[:5])         # 前五個數據
    y = torch.tensor([1, 1, 1, 1, 1])  # 標簽
    
    
    torch_dataset = Data.TensorDataset(x, y)  # 對給定的 tensor 數據,將他們包裝成 dataset
    
    loader = Data.DataLoader(
        # 從數據庫中每次抽出batch size個樣本
        dataset = torch_dataset,       # torch TensorDataset format
        batch_size = 2,                # mini batch size
        shuffle=True,                  # 要不要打亂數據 (打亂比較好)
        num_workers=2,                 # 多線程來讀數據
    )
    
    def show_batch():
        for step, (batch_x, batch_y) in enumerate(loader):
            print("steop:{}, batch_x:{}, batch_y:{}".format(step, batch_x, batch_y))
    
    show_batch()

    輸出結果:

    steop:0, batch_x:tensor([[0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 6.3000e-01, 0.0000e+00,
             3.1000e-01, 6.3000e-01, 3.1000e-01, 6.3000e-01, 3.1000e-01, 3.1000e-01,
             3.1000e-01, 0.0000e+00, 0.0000e+00, 3.1000e-01, 0.0000e+00, 0.0000e+00,
             3.1800e+00, 0.0000e+00, 3.1000e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 1.3500e-01, 0.0000e+00, 1.3500e-01, 0.0000e+00, 0.0000e+00,
             3.5370e+00, 4.0000e+01, 1.9100e+02],
            [0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 6.3000e-01, 0.0000e+00,
             3.1000e-01, 6.3000e-01, 3.1000e-01, 6.3000e-01, 3.1000e-01, 3.1000e-01,
             3.1000e-01, 0.0000e+00, 0.0000e+00, 3.1000e-01, 0.0000e+00, 0.0000e+00,
             3.1800e+00, 0.0000e+00, 3.1000e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 1.3700e-01, 0.0000e+00, 1.3700e-01, 0.0000e+00, 0.0000e+00,
             3.5370e+00, 4.0000e+01, 1.9100e+02]], dtype=torch.float64), batch_y:tensor([1, 1])
    steop:1, batch_x:tensor([[2.1000e-01, 2.8000e-01, 5.0000e-01, 0.0000e+00, 1.4000e-01, 2.8000e-01,
             2.1000e-01, 7.0000e-02, 0.0000e+00, 9.4000e-01, 2.1000e-01, 7.9000e-01,
             6.5000e-01, 2.1000e-01, 1.4000e-01, 1.4000e-01, 7.0000e-02, 2.8000e-01,
             3.4700e+00, 0.0000e+00, 1.5900e+00, 0.0000e+00, 4.3000e-01, 4.3000e-01,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             7.0000e-02, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 1.3200e-01, 0.0000e+00, 3.7200e-01, 1.8000e-01, 4.8000e-02,
             5.1140e+00, 1.0100e+02, 1.0280e+03],
            [6.0000e-02, 0.0000e+00, 7.1000e-01, 0.0000e+00, 1.2300e+00, 1.9000e-01,
             1.9000e-01, 1.2000e-01, 6.4000e-01, 2.5000e-01, 3.8000e-01, 4.5000e-01,
             1.2000e-01, 0.0000e+00, 1.7500e+00, 6.0000e-02, 6.0000e-02, 1.0300e+00,
             1.3600e+00, 3.2000e-01, 5.1000e-01, 0.0000e+00, 1.1600e+00, 6.0000e-02,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 6.0000e-02, 0.0000e+00, 0.0000e+00,
             1.2000e-01, 0.0000e+00, 6.0000e-02, 6.0000e-02, 0.0000e+00, 0.0000e+00,
             1.0000e-02, 1.4300e-01, 0.0000e+00, 2.7600e-01, 1.8400e-01, 1.0000e-02,
             9.8210e+00, 4.8500e+02, 2.2590e+03]], dtype=torch.float64), batch_y:tensor([1, 1])
    steop:2, batch_x:tensor([[  0.0000,   0.6400,   0.6400,   0.0000,   0.3200,   0.0000,   0.0000,
               0.0000,   0.0000,   0.0000,   0.0000,   0.6400,   0.0000,   0.0000,
               0.0000,   0.3200,   0.0000,   1.2900,   1.9300,   0.0000,   0.9600,
               0.0000,   0.0000,   0.0000,   0.0000,   0.0000,   0.0000,   0.0000,
               0.0000,   0.0000,   0.0000,   0.0000,   0.0000,   0.0000,   0.0000,
               0.0000,   0.0000,   0.0000,   0.0000,   0.0000,   0.0000,   0.0000,
               0.0000,   0.0000,   0.0000,   0.0000,   0.0000,   0.0000,   0.0000,
               0.0000,   0.0000,   0.7780,   0.0000,   0.0000,   3.7560,  61.0000,
             278.0000]], dtype=torch.float64), batch_y:tensor([1])

    一共 5 條數據,batch_size 設為 2 ,則數據被分為三組,每組的數據量為:2,2,1。

    實例 2:進階

    import torch.utils.data as Data
    import pandas as pd  # 這個包用來讀取CSV數據
    import numpy as np
    
    # 繼承Dataset,定義自己的數據集類 mydataset
    class mydataset(Data.Dataset):
        def __init__(self, csv_file):   # self 參數必須,其他參數及其形式隨程序需要而不同,比如(self,*inputs)
            # 讀取數據
            frame = pd.DataFrame(pd.read_csv('spambase.csv'))
            spam = frame[frame['58'] == 1]
            ham = frame[frame['58'] == 0]
            SpamNew = spam.drop(axis=1, columns='58', inplace=False)  # 刪除第58列,inplace=False不改變原數據,返回一個新dataframe
            HamNew = ham.drop(axis=1, columns='58', inplace=False)
            # 數據
            self.csv_data = np.vstack([np.array(SpamNew), np.array(HamNew)])  # 將兩個N維數組進行連接,形成X
            # 標簽
            self.Label = np.array([1] * len(spam) + [0] * len(ham))  # 形成標簽值列表y
        def __len__(self):
            return len(self.csv_data)
        def __getitem__(self, idx):
            data = self.csv_data[idx]
            label = self.Label[idx]
            return data, label
    
    
    data = mydataset('spambase.csv')
    print(len(data))
    
    loader = Data.DataLoader(
        # 從數據庫中每次抽出batch size個樣本
        dataset = data,       # torch TensorDataset format
        batch_size = 460,                # mini batch size
        shuffle=True,                  # 要不要打亂數據 (打亂比較好)
        num_workers=2,                 # 多線程來讀數據
    )
    
    def show_batch():
        for step, (batch_x, batch_y) in enumerate(loader):
            print("steop:{}, batch_x:{}, batch_y:{}".format(step, batch_x, batch_y))
    
    show_batch()

    輸出結果:

    4601
    steop:0, batch_x:tensor([[0.0000e+00, 2.4600e+00, 0.0000e+00,  ..., 2.1420e+00, 1.0000e+01,
             7.5000e+01],
            [0.0000e+00, 0.0000e+00, 1.6000e+00,  ..., 2.0650e+00, 1.2000e+01,
             9.5000e+01],
            [0.0000e+00, 0.0000e+00, 3.6000e-01,  ..., 3.7220e+00, 2.0000e+01,
             2.6800e+02],
            ...,
            [7.7000e-01, 3.8000e-01, 7.7000e-01,  ..., 1.4619e+01, 5.2500e+02,
             9.2100e+02],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 1.0000e+00, 1.0000e+00,
             5.0000e+00],
            [4.0000e-01, 1.8000e-01, 3.2000e-01,  ..., 3.3050e+00, 1.8100e+02,
             1.6130e+03]], dtype=torch.float64), batch_y:tensor([0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1,
            0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0,
            0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0,
            1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0,
            0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
            1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0,
            0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
            0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0,
            1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
            0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1,
            1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
            0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0,
            0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1,
            0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0,
            1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0,
            0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1,
            1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1,
            0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1,
            0, 1, 0, 1])
    steop:1, batch_x:tensor([[0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 1.0000e+00, 1.0000e+00,
             2.0000e+00],
            [4.9000e-01, 0.0000e+00, 7.4000e-01,  ..., 3.9750e+00, 4.7000e+01,
             4.8500e+02],
            [0.0000e+00, 0.0000e+00, 7.1000e-01,  ..., 4.0220e+00, 9.7000e+01,
             5.4300e+02],
            ...,
            [0.0000e+00, 1.4000e-01, 1.4000e-01,  ..., 5.3310e+00, 8.0000e+01,
             1.0290e+03],
            [0.0000e+00, 0.0000e+00, 3.6000e-01,  ..., 3.1760e+00, 5.1000e+01,
             2.7000e+02],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 1.1660e+00, 2.0000e+00,
             7.0000e+00]], dtype=torch.float64), batch_y:tensor([0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
            1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0,
            0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0,
            1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0,
            1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0,
            0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
            1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0,
            0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0,
            1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1,
            1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1,
            0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
            0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
            0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0,
            0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
            0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
            1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1,
            1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
            0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
            0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1,
            1, 0, 0, 0])
    steop:2, batch_x:tensor([[0.0000e+00, 0.0000e+00, 1.4700e+00,  ..., 3.0000e+00, 3.3000e+01,
             1.7700e+02],
            [2.6000e-01, 4.6000e-01, 9.9000e-01,  ..., 1.3235e+01, 2.7200e+02,
             1.5750e+03],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 2.0450e+00, 6.0000e+00,
             4.5000e+01],
            ...,
            [4.0000e-01, 0.0000e+00, 0.0000e+00,  ..., 1.1940e+00, 5.0000e+00,
             1.2900e+02],
            [2.6000e-01, 0.0000e+00, 0.0000e+00,  ..., 1.8370e+00, 1.1000e+01,
             1.5800e+02],
            [5.0000e-02, 0.0000e+00, 1.0000e-01,  ..., 3.7150e+00, 1.0700e+02,
             1.3860e+03]], dtype=torch.float64), batch_y:tensor([1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
            0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0,
            1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
            0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
            0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
            0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0,
            0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0,
            0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1,
            0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0,
            1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0,
            0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0,
            0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0,
            1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
            1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1,
            0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0,
            0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0,
            0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1,
            1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0,
            1, 1, 0, 0])
    steop:3, batch_x:tensor([[2.6000e-01, 0.0000e+00, 5.3000e-01,  ..., 2.6460e+00, 7.7000e+01,
             1.7200e+02],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 2.4280e+00, 5.0000e+00,
             1.7000e+01],
            [3.4000e-01, 0.0000e+00, 1.7000e+00,  ..., 6.6700e+02, 1.3330e+03,
             1.3340e+03],
            ...,
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 1.0000e+00, 1.0000e+00,
             7.0000e+00],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 2.7010e+00, 2.0000e+01,
             1.8100e+02],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 4.0000e+00, 1.1000e+01,
             3.6000e+01]], dtype=torch.float64), batch_y:tensor([0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
            1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1,
            0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
            1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0,
            0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
            0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0,
            1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
            1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0,
            0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
            0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1,
            0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0,
            0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1,
            0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1,
            1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0,
            1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0,
            1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0,
            1, 0, 0, 1])
    steop:4, batch_x:tensor([[  0.0000,   0.0000,   0.3100,  ...,   5.7080, 138.0000, 274.0000],
            [  0.0000,   0.0000,   0.3400,  ...,   2.2570,  17.0000, 158.0000],
            [  1.0400,   0.0000,   0.0000,  ...,   1.0000,   1.0000,  17.0000],
            ...,
            [  0.0000,   0.0000,   0.0000,  ...,   4.0000,  12.0000,  28.0000],
            [  0.3300,   0.0000,   0.0000,  ...,   1.7880,   6.0000,  93.0000],
            [  0.0000,  14.2800,   0.0000,  ...,   1.8000,   5.0000,   9.0000]],
           dtype=torch.float64), batch_y:tensor([1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1,
            0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1,
            0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0,
            1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1,
            0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
            1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0,
            0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1,
            0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0,
            1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1,
            1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0,
            0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0,
            1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1,
            0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
            0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
            1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0,
            0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
            0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1,
            1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0,
            1, 1, 0, 0])
    steop:5, batch_x:tensor([[7.0000e-01, 0.0000e+00, 1.0500e+00,  ..., 1.1660e+00, 1.3000e+01,
             1.8900e+02],
            [0.0000e+00, 3.3600e+00, 1.9200e+00,  ..., 6.1370e+00, 1.0700e+02,
             1.7800e+02],
            [5.4000e-01, 0.0000e+00, 1.0800e+00,  ..., 5.4540e+00, 6.8000e+01,
             1.8000e+02],
            ...,
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 3.8330e+00, 9.0000e+00,
             2.3000e+01],
            [6.0000e-02, 6.5000e-01, 7.1000e-01,  ..., 4.7420e+00, 1.1700e+02,
             1.3420e+03],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 2.6110e+00, 1.2000e+01,
             4.7000e+01]], dtype=torch.float64), batch_y:tensor([1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1,
            1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
            0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
            0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0,
            0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1,
            0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1,
            0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
            0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0,
            0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1,
            1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1,
            0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1,
            1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1,
            0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1,
            0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0,
            0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1,
            0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1,
            0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
            1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0,
            0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
            0, 1, 1, 1])
    steop:6, batch_x:tensor([[0.0000e+00, 1.4280e+01, 0.0000e+00,  ..., 1.8000e+00, 5.0000e+00,
             9.0000e+00],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 1.9280e+00, 1.5000e+01,
             5.4000e+01],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 1.0692e+01, 6.5000e+01,
             1.3900e+02],
            ...,
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 1.5000e+00, 5.0000e+00,
             2.4000e+01],
            [7.6000e-01, 1.9000e-01, 3.8000e-01,  ..., 3.7020e+00, 4.5000e+01,
             1.0700e+03],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 2.0000e+00, 1.2000e+01,
             8.8000e+01]], dtype=torch.float64), batch_y:tensor([0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1,
            0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1,
            0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
            1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1,
            1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0,
            0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1,
            0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0,
            0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0,
            0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
            0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
            1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0,
            0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
            1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1,
            0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
            0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0,
            0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1,
            1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
            1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
            1, 0, 1, 0])
    steop:7, batch_x:tensor([[0.0000e+00, 2.7000e-01, 0.0000e+00,  ..., 5.8020e+00, 4.3000e+01,
             4.1200e+02],
            [0.0000e+00, 3.5000e-01, 7.0000e-01,  ..., 3.6390e+00, 6.1000e+01,
             3.1300e+02],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 1.5920e+00, 7.0000e+00,
             1.2900e+02],
            ...,
            [8.0000e-02, 1.6000e-01, 8.0000e-02,  ..., 2.7470e+00, 8.6000e+01,
             1.9950e+03],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 1.6130e+00, 1.1000e+01,
             7.1000e+01],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 1.9110e+00, 1.5000e+01,
             6.5000e+01]], dtype=torch.float64), batch_y:tensor([0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0,
            0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
            1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1,
            0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1,
            0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1,
            0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
            0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0,
            1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
            1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0,
            0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1,
            0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
            0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
            0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0,
            1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1,
            0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,
            0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1,
            1, 0, 0, 0])
    steop:8, batch_x:tensor([[1.7000e-01, 0.0000e+00, 1.7000e-01,  ..., 1.7960e+00, 1.2000e+01,
             4.5800e+02],
            [3.7000e-01, 0.0000e+00, 6.3000e-01,  ..., 1.1810e+00, 4.0000e+00,
             1.0400e+02],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 1.0000e+00, 1.0000e+00,
             7.0000e+00],
            ...,
            [2.3000e-01, 0.0000e+00, 4.7000e-01,  ..., 2.4200e+00, 1.2000e+01,
             3.3400e+02],
            [0.0000e+00, 0.0000e+00, 1.2900e+00,  ..., 1.3500e+00, 4.0000e+00,
             2.7000e+01],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 1.3730e+00, 1.1000e+01,
             1.6900e+02]], dtype=torch.float64), batch_y:tensor([1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1,
            0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0,
            1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0,
            0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,
            1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0,
            0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0,
            0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0,
            0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1,
            0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
            1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1,
            0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0,
            1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
            0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
            1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
            0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1,
            1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0,
            1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0,
            0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
            1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1,
            0, 0, 0, 0])
    steop:9, batch_x:tensor([[0.0000e+00, 6.3000e-01, 0.0000e+00,  ..., 2.2150e+00, 2.2000e+01,
             1.1300e+02],
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 1.0000e+00, 1.0000e+00,
             5.0000e+00],
            [0.0000e+00, 0.0000e+00, 2.0000e-01,  ..., 1.1870e+00, 1.1000e+01,
             1.1400e+02],
            ...,
            [0.0000e+00, 0.0000e+00, 0.0000e+00,  ..., 2.3070e+00, 1.6000e+01,
             3.0000e+01],
            [5.1000e-01, 4.3000e-01, 2.9000e-01,  ..., 6.5900e+00, 7.3900e+02,
             2.3330e+03],
            [6.8000e-01, 6.8000e-01, 6.8000e-01,  ..., 2.4720e+00, 9.0000e+00,
             8.9000e+01]], dtype=torch.float64), batch_y:tensor([0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,
            0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0,
            0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1,
            1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0,
            0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0,
            0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
            1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1,
            0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,
            0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1,
            1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0,
            1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,
            0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,
            1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
            0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
            1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0,
            1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
            1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0,
            1, 1, 1, 1])
    steop:10, batch_x:tensor([[0.0000e+00, 2.5000e-01, 7.5000e-01, 0.0000e+00, 1.0000e+00, 2.5000e-01,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 2.5000e-01, 2.5000e-01,
             1.2500e+00, 0.0000e+00, 0.0000e+00, 2.5000e-01, 0.0000e+00, 1.2500e+00,
             2.5100e+00, 0.0000e+00, 1.7500e+00, 0.0000e+00, 2.5000e-01, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 2.5000e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 4.2000e-02, 0.0000e+00, 0.0000e+00,
             1.2040e+00, 7.0000e+00, 1.1800e+02]], dtype=torch.float64), batch_y:tensor([0])

    一共 4601 條數據,按 batch_size = 460 來分:能劃分為 11 組,前 10 組的數據量為 460,最后一組的數據量為 1 。

    到此,相信大家對“PyTorch torch.utils.data.Dataset怎么使用”有了更深的了解,不妨來實際操作一番吧!這里是億速云網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!

    向AI問一下細節

    免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

    AI

    大洼县| 拉孜县| 南开区| 唐河县| 临泉县| 浦东新区| 昌吉市| 高州市| 宁明县| 沂南县| 和龙市| 民权县| 十堰市| 北海市| 平顶山市| 二手房| 南通市| 宜兰市| 满洲里市| 廉江市| 烟台市| 佛山市| 文登市| 宝鸡市| 大新县| 闸北区| 庆元县| 高淳县| 石河子市| 南华县| 长泰县| 苍山县| 东兰县| 安龙县| 柘荣县| 施甸县| 玛沁县| 开阳县| 兴安县| 儋州市| 十堰市|