91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

golang有in嗎

發布時間:2023-01-28 10:06:03 來源:億速云 閱讀:127 作者:iii 欄目:編程語言

本文小編為大家詳細介紹“golang有in嗎”,內容詳細,步驟清晰,細節處理妥當,希望這篇“golang有in嗎”文章能幫助大家解決疑惑,下面跟著小編的思路慢慢深入,一起來學習新知識吧。

golang沒有in。golang中即沒有提供類似Python操作符in,也沒有像其他語言那樣提供這樣的標準庫函數,如PHP中in_array。原因:1、in功能實現非常簡單,沒有必要;2、在不同場景下,我們還需要根據實際情況分析用哪種方式實現,而不是一種固定的方式。

in 是一個很常用的功能,有些語言中可能也稱為 contains,雖然不同語言的表示不同,但基本都是有的。不過可惜的是,Go 卻沒有,它即沒有提供類似 Python 操作符 in,也沒有像其他語言那樣提供這樣的標準庫函數,如 PHP 中 in_array。

Go 的哲學是追求少即是多。我想或許 Go 團隊覺得這是一個實現起來不足為道的功能吧。

為何說微不足道?如果要自己實現,又該如何做呢?

我所想到的有三種實現方式,一是遍歷,二是 sort 的二分查找,三是 map 的 key 索引。

遍歷

遍歷應該是我們最容易想到的最簡單的實現方式。

示例如下:

func InIntSlice(haystack []int, needle int) bool {
    for _, e := range haystack {
        if e == needle {
            return true
        }
    }

    return false
}

上面演示了如何在一個 []int 類型變量中查找指定 int 是否存在的例子,是不是非常簡單,由此我們也可以感受到我為什么說它實現起來微不足道。

這個例子有個缺陷,它只支持單一類型。如果要支持像解釋語言一樣的通用 in 功能,則需借助反射實現。

代碼如下:

func In(haystack interface{}, needle interface{}) (bool, error) {
    sVal := reflect.ValueOf(haystack)
    kind := sVal.Kind()
    if kind == reflect.Slice || kind == reflect.Array {
        for i := 0; i < sVal.Len(); i++ {
            if sVal.Index(i).Interface() == needle {
                return true, nil
            }
        }

        return false, nil
    }

    return false, ErrUnSupportHaystack
}

為了更加通用,In 函數的輸入參數 haystack 和 needle 都是 interface{} 類型。

簡單說說輸入參數都是 interface{} 的好處吧,主要有兩點,如下:

  • 其一,haystack 是 interface{} 類型,使 in 支持的類型不止于 slice,還包括 array。我們看到,函數內部通過反射對 haystack 進行了類型檢查,支持 slice(切片)與 array(數組)。如果是其他類型則會提示錯誤,增加新的類型支持,如 map,其實也很簡單。但不推薦這種方式,因為通過 _, ok := m[k] 的語法即可達到 in 的效果。

  • 其二,haystack 是 interface{},則 []interface{} 也滿足要求,并且 needle 是 interface{}。如此一來,我們就可以實現類似解釋型語言一樣的效果了。

怎么理解?直接示例說明,如下:

gotin.In([]interface{}{1, "two", 3}, "two")

haystack 是 []interface{}{1, "two", 3},而且 needle 是 interface{},此時的值是 "two"。如此看起來,是不是實現了解釋型語言中,元素可以是任意類型,不必完全相同效果。如此一來,我們就可以肆意妄為的使用了。

但有一點要說明,In 函數的實現中有這樣一段代碼:

if sVal.Index(i).Interface() == needle {
    ...
}

Go 中并非任何類型都可以使用 == 比較的,如果元素中含有 slice 或 map,則可能會報錯。

二分查找

以遍歷確認元素是否存在有個缺點,那就是,如果數組或切片中包含了大量數據,比如 1000000 條數據,即一百萬,最壞的情況是,我們要遍歷 1000000 次才能確認,時間復雜度 On。

有什么辦法可以降低遍歷次數?

自然而然地想到的方法是二分查找,它的時間復雜度 log2(n) 。但這個算法有前提,需要依賴有序序列。

于是,第一個要我們解決的問題是使序列有序,Go 的標準庫已經提供了這個功能,在 sort 包下。

示例代碼如下:

fmt.Println(sort.SortInts([]int{4, 2, 5, 1, 6}))

對于 []int,我們使用的函數是 SortInts,如果是其他類型切片,sort 也提供了相關的函數,比如 []string 可通過 SortStrings 排序。

完成排序就可以進行二分查找,幸運的是,這個功能 Go 也提供了,[]int 類型對應函數是 SearchInts。

簡單介紹下這個函數,先看定義:

func SearchInts(a []int, x int) int

輸入參數容易理解,從切片 a 中搜索 x。重點要說下返回值,這對于我們后面確認元素是否存在至關重要。返回值的含義,返回查找元素在切片中的位置,如果元素不存在,則返回,在保持切片有序情況下,插入該元素應該在什么位置。

比如,序列如下:

1 2 6 8 9 11

假設,x 為 6,查找之后將發現它的位置在索引 2 處;x 如果是 7,發現不存在該元素,如果插入序列,將會放在 6 和 8 之間,索引位置是 3,因而返回值為 3。

代碼測試下:

fmt.Println(sort.SearchInts([]int{1, 2, 6, 8, 9, 11}, 6)) // 2
fmt.Println(sort.SearchInts([]int{1, 2, 6, 8, 9, 11}, 7)) // 3

如果判斷元素是否在序列中,只要判斷返回位置上的值是否和查找的值相同即可。

但還有另外一種情況,如果插入元素位于序列最后,例如元素值為 12,插入位置即為序列的長度 6。如果直接查找 6 位置上的元素就可能發生越界的情況。那怎么辦呢?其實判斷返回是否小于切片長度即可,小于則說明元素不在切片序列中。

完整的實現代碼如下:

func SortInIntSlice(haystack []int, needle int) bool {
    sort.Ints(haystack)
    
    index := sort.SearchInts(haystack, needle)
    return index < len(haystack) && haystack[index] == needle
}

但這還有個問題,對于無序的場景,如果每次查詢都要經過一次排序并不劃算。最好能實現一次排序,稍微修改下代碼。

func InIntSliceSortedFunc(haystack []int) func(int) bool {
    sort.Ints(haystack)
    
    return func(needle int) bool {
        index := sort.SearchInts(haystack, needle)
        return index < len(haystack) && haystack[index] == needle
    }
}

上面的實現,我們通過調用 InIntSliceSortedFunc 對 haystack 切片排序,并返回一個可多次使用的函數。

使用案例如下:

in := gotin.InIntSliceSortedFunc(haystack)

for i := 0; i<maxNeedle; i++ {
    if in(i) {
        fmt.Printf("%d is in %v", i, haystack)
    }
}

二分查找的方式有什么不足呢?

我想到的重要一點,要實現二分查找,元素必須是可排序的,如 int,string,float 類型。而對于結構體、切片、數組、映射等類型,使用起來就不是那么方便,當然,如果要用,也是可以的,不過需要我們進行一些適當擴展,按指定標準排序,比如結構的某個成員。

到此,二分查找的 in 實現就介紹完畢了。

map key

本節介紹 map key 方式。它的算法復雜度是 O1,無論數據量多大,查詢性能始終不變。它主要依賴的是 Go 中的 map 數據類型,通過 hash map 直接檢查 key 是否存在,算法大家應該都比較熟悉,通過 key 可直接映射到索引位置。

我們常會用到這個方法。

_, ok := m[k]
if ok {
    fmt.Println("Found")
}

那么它和 in 如何結合呢?一個案例就說明白了這個問題。

假設,我們有一個 []int 類型變量,如下:

s := []int{1, 2, 3}

為了使用 map 的能力檢查某個元素是否存在,可以將 s 轉化 map[int]struct{}。

m := map[interface{}]struct{}{
    1: struct{}{},
    2: struct{}{},
    3: struct{}{},
    4: struct{}{},
}

如果檢查某個元素是否存在,只需要通過如下寫法即可確定:

k := 4
if _, ok := m[k]; ok {
    fmt.Printf("%d is found\n", k)
}

是不是非常簡單?

補充一點,關于這里為什么使用 struct{},可以閱讀我之前寫的一篇關于 Go 中如何使用 set 的文章。

按照這個思路,實現函數如下:

func MapKeyInIntSlice(haystack []int, needle int) bool {
    set := make(map[int]struct{})
    
    for _ , e := range haystack {
        set[e] = struct{}{}
    }
    
    _, ok := set[needle]
    return ok
}

實現起來不難,但和二分查找有著同樣的問題,開始要做數據處理,將 slice 轉化為 map。如果是每次數據相同,稍微修改下它的實現。

func InIntSliceMapKeyFunc(haystack []int) func(int) bool {
    set := make(map[int]struct{})

    for _ , e := range haystack {
        set[e] = struct{}{}
    }

    return func(needle int) bool {
        _, ok := set[needle]
        return ok
    }
}

對于相同的數據,它會返回一個可多次使用的 in 函數,一個使用案例如下:

in := gotin.InIntSliceMapKeyFunc(haystack)

for i := 0; i<maxNeedle; i++ {
    if in(i) {
        fmt.Printf("%d is in %v", i, haystack)
    }
}

對比前兩種算法,這種方式的處理效率最高,非常適合于大數據的處理。接下來的性能測試,我們將會看到效果。

性能

介紹完所有方式,我們來實際對比下每種算法的性能。測試源碼位于 gotin_test.go 文件中。

基準測試主要是從數據量大小考察不同算法的性能,本文中選擇了三個量級的測試樣本數據,分別是 10、1000、1000000。

為便于測試,首先定義了一個用于生成 haystack 和 needle 樣本數據的函數。

代碼如下:

func randomHaystackAndNeedle(size int) ([]int, int){
    haystack := make([]int, size)

    for i := 0; i<size ; i++{
        haystack[i] = rand.Int()
    }

    return haystack, rand.Int()
}

輸入參數是 size,通過 http://rand.Int() 隨機生成切片大小為 size 的 haystack 和 1 個 needle。在基準測試用例中,引入這個隨機函數生成數據即可。

舉個例子,如下:

func BenchmarkIn_10(b *testing.B) {
    haystack, needle := randomHaystackAndNeedle(10)

    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        _, _ = gotin.In(haystack, needle)
    }
}

首先,通過 randomHaystackAndNeedle 隨機生成了一個含有 10 個元素的切片。因為生成樣本數據的時間不應該計入到基準測試中,我們使用 b.ResetTimer() 重置了時間。

其次,壓測函數是按照 Test+函數名+樣本數據量 規則編寫,如案例中 BenchmarkIn_10,表示測試 In 函數,樣本數據量為 10。如果我們要用 1000 數據量測試 InIntSlice,壓測函數名為 BenchmarkInIntSlice_1000。

測試開始吧!簡單說下我的筆記本配置,Mac Pro 15 版,16G 內存,512 SSD,4 核 8 線程的 CPU。

測試所有函數在數據量在 10 的情況下的表現。

$ go test -run=none -bench=10$ -benchmem

匹配所有以 10 結尾的壓測函數。

測試結果:

goos: darwin
goarch: amd64
pkg: github.com/poloxue/gotin
BenchmarkIn_10-8                         3000000               501 ns/op             112 B/op         11 allocs/op
BenchmarkInIntSlice_10-8                200000000                7.47 ns/op            0 B/op          0 allocs/op
BenchmarkInIntSliceSortedFunc_10-8      100000000               22.3 ns/op             0 B/op          0 allocs/op
BenchmarkSortInIntSlice_10-8            10000000               162 ns/op              32 B/op          1 allocs/op
BenchmarkInIntSliceMapKeyFunc_10-8      100000000               17.7 ns/op             0 B/op          0 allocs/op
BenchmarkMapKeyInIntSlice_10-8           3000000               513 ns/op             163 B/op          1 allocs/op
PASS
ok      github.com/poloxue/gotin        13.162s

表現最好的并非 SortedFunc 和 MapKeyFunc,而是最簡單的針對單類型的遍歷查詢,平均耗時 7.47ns/op,當然,另外兩種方式表現也不錯,分別是 22.3ns/op 和 17.7ns/op。

表現最差的是 In、SortIn(每次重復排序) 和 MapKeyIn(每次重復創建 map)兩種方式,平均耗時分別為 501ns/op 和 513ns/op。

測試所有函數在數據量在 1000 的情況下的表現。

$ go test -run=none -bench=1000$ -benchmem

測試結果:

goos: darwin
goarch: amd64
pkg: github.com/poloxue/gotin
BenchmarkIn_1000-8                         30000             45074 ns/op            8032 B/op       1001 allocs/op
BenchmarkInIntSlice_1000-8               5000000               313 ns/op               0 B/op          0 allocs/op
BenchmarkInIntSliceSortedFunc_1000-8    30000000                44.0 ns/op             0 B/op          0 allocs/op
BenchmarkSortInIntSlice_1000-8             20000             65401 ns/op              32 B/op          1 allocs/op
BenchmarkInIntSliceMapKeyFunc_1000-8    100000000               17.6 ns/op             0 B/op          0 allocs/op
BenchmarkMapKeyInIntSlice_1000-8           20000             82761 ns/op           47798 B/op         65 allocs/op
PASS
ok      github.com/poloxue/gotin        11.312s

表現前三依然是 InIntSlice、InIntSliceSortedFunc 和 InIntSliceMapKeyFunc,但這次順序發生了變化,MapKeyFunc 表現最好,17.6 ns/op,與數據量 10 的時候相比基本無變化。再次驗證了前文的說法。

同樣的,數據量 1000000 的時候。

$ go test -run=none -bench=1000000$ -benchmem

測試結果如下:

goos: darwin
goarch: amd64
pkg: github.com/poloxue/gotin
BenchmarkIn_1000000-8                                 30          46099678 ns/op         8000098 B/op    1000001 allocs/op
BenchmarkInIntSlice_1000000-8                       3000            424623 ns/op               0 B/op          0 allocs/op
BenchmarkInIntSliceSortedFunc_1000000-8         20000000                72.8 ns/op             0 B/op          0 allocs/op
BenchmarkSortInIntSlice_1000000-8                     10         138873420 ns/op              32 B/op          1 allocs/op
BenchmarkInIntSliceMapKeyFunc_1000000-8         100000000               16.5 ns/op             0 B/op          0 allocs/op
BenchmarkMapKeyInIntSlice_1000000-8                   10         156215889 ns/op        49824225 B/op      38313 allocs/op
PASS
ok      github.com/poloxue/gotin        15.178s

MapKeyFunc 依然表現最好,每次操作用時 17.2 ns,Sort 次之,而 InIntSlice 呈現線性增加的趨勢。一般情況下,如果不是對性能要特殊要求,數據量特別大的場景,針對單類型的遍歷已經有非常好的性能了。

從測試結果可以看出,反射實現的通用 In 函數每次執行需要進行大量的內存分配,方便的同時,也是以犧牲性能為代價的。

讀到這里,這篇“golang有in嗎”文章已經介紹完畢,想要掌握這篇文章的知識點還需要大家自己動手實踐使用過才能領會,如果想了解更多相關內容的文章,歡迎關注億速云行業資訊頻道。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

体育| 巢湖市| 张家界市| 商城县| 都昌县| 万源市| 抚远县| 廉江市| 文化| 苍南县| 平远县| 土默特右旗| 虹口区| 隆昌县| 翁源县| 镇宁| 岫岩| 九江市| 隆昌县| 原平市| 关岭| 清新县| 乌兰察布市| 丹东市| 视频| 万载县| 中超| 湘潭市| 重庆市| 龙江县| 榆林市| 讷河市| 大化| 九江市| 慈利县| 巧家县| 陆河县| 鄄城县| 扶绥县| 积石山| 建德市|