您好,登錄后才能下訂單哦!
這篇文章主要講解了“怎么使用pytorch和tensorflow計算Flops和params”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“怎么使用pytorch和tensorflow計算Flops和params”吧!
net = model() # 定義好的網絡模型 total = sum([param.nelement() for param in net.parameters()]) print("Number of parameter: %.2fM" % total)
這是網上很常見的直接用自帶方法計算params,基本不會出錯。勝在簡潔。
要計算flops,目前沒見到用自帶方法計算的,基本都是要安裝別的庫。
這邊我們安裝thop庫。
pip install thop # 安裝thop庫
import torch from thop import profile net = model() # 定義好的網絡模型 img1 = torch.randn(1, 3, 512, 512) img2 = torch.randn(1, 3, 512, 512) img3 = torch.randn(1, 3, 512, 512) macs, params = profile(net, (img1,img2,img3)) print('flops: ', 2*macs, 'params: ', params)
這邊和其他網上教程的區別便是,他們macs和flops不分。因為macs表示乘加累積操作數,一個乘法加上一個加法才算一個macs。而flops表示浮點運算次數,每一個加、減、乘、除操作都算1FLOPs操作。所以很明顯,在數值上,1flops=2macs。此外,(img1,img2,img3)就表示你如果有三個輸入要輸入模型,就這樣寫。
另外,要注意,params只和模型參數量相關,而和輸入tensor大小無關。但flops和輸入圖片大小是相關的.
此處是我找到的一些用于tensorflow計算params和flops的方法,僅供參考,不保證效果。
def get_flops_params(): sess = tf.compat.v1.Session() graph = sess.graph flops = tf.compat.v1.profiler.profile(graph, options=tf.compat.v1.profiler.ProfileOptionBuilder.float_operation()) params = tf.compat.v1.profiler.profile(graph, options=tf.compat.v1.profiler.ProfileOptionBuilder.trainable_variables_parameter()) print('FLOPs: {}; Trainable params: {}'.format(flops.total_float_ops, params.total_parameters)) def count2(): print(np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()])) def get_nb_params_shape(shape): ''' Computes the total number of params for a given shap. Works for any number of shapes etc [D,F] or [W,H,C] computes D*F and W*H*C. ''' nb_params = 1 for dim in shape: nb_params = nb_params * int(dim) return nb_params def count3(): tot_nb_params = 0 for trainable_variable in tf.trainable_variables(): shape = trainable_variable.get_shape() # e.g [D,F] or [W,H,C] current_nb_params = get_nb_params_shape(shape) tot_nb_params = tot_nb_params + current_nb_params print(tot_nb_params) import tensorflow.compat.v1 as tf tf.compat.v1.disable_eager_execution() from model import Model import keras.backend as K def get_flops(model): run_meta = tf.RunMetadata() opts = tf.profiler.ProfileOptionBuilder.float_operation() # We use the Keras session graph in the call to the profiler. flops = tf.profiler.profile(graph=K.get_session().graph, run_meta=run_meta, cmd='op', options=opts) return flops.total_float_ops # Prints the "flops" of the model. # .... Define your model here .... M = Model(BATCH_SIZE=1, INPUT_H=268, INPUT_W=360, is_training=False) print(get_flops(M))
感謝各位的閱讀,以上就是“怎么使用pytorch和tensorflow計算Flops和params”的內容了,經過本文的學習后,相信大家對怎么使用pytorch和tensorflow計算Flops和params這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。