您好,登錄后才能下訂單哦!
本篇內容主要講解“YOLOv5改進之添加SE注意力機制是什么”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“YOLOv5改進之添加SE注意力機制是什么”吧!
加入SE通道注意力機制,可以讓網絡更加關注待檢測目標,提高檢測效果
SE模塊的原理和結構
第一步:確定添加的位置,作為即插即用的注意力模塊,可以添加到YOLOv5網絡中的任何地方。本文以添加進C3模塊中為例。
第二步:common.py構建融入se模塊的C3,與原C3模塊不同的是,該模塊中的bottleneck中融入se模塊。這樣添加主要為了更好的做實驗。
class seC3(nn.Module): # CSP Bottleneck with 3 convolutions def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super(seC3, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) self.m = nn.Sequential(*[seBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) def forward(self, x): return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) class seBottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion super(seBottleneck, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 self.avgpool = nn.AdaptiveAvgPool2d(1) self.l1 = nn.Linear(c1, c1 // 4, bias=False) self.relu = nn.ReLU(inplace=True) self.l2 = nn.Linear(c1 // 4, c1, bias=False) self.sig = nn.Sigmoid() def forward(self, x): x = self.cv1(x) b, c, _, _ = x.size() y = self.avgpool(x).view(b, c) y = self.l1(y) y = self.relu(y) y = self.l2(y) y = self.sig(y) y = y.view(b, c, 1, 1) x = x * y.expand_as(x) return x + self.cv2(x) if self.add else self.cv2(self.cv1(x))
第三步:yolo.py中注冊我們進行修改的seC3
if m in [Conv, GhostConv, Bottleneck, Bottleneck_cot,TransformerC3,GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3,seC3]: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, seC3]: args.insert(2, n) # number of repeats n = 1
第四步:修改yaml文件,本文以修改主干特征提取網絡為例,將原C3模塊改為seC3即可。
第五步:將train.py中改為本文的yaml文件即可,開始訓練。
本人在多個數據集上做了大量實驗,針對不同的數據集效果不同,同一個數據集的不同添加位置方法也是有差異,需要大家進行實驗。有效果有提升的情況占大多數。
PS:SE通道注意力機制,參數量引入較少,不僅僅是可以添加進YOLOv5,也可以添加進任何其他的深度學習網絡,不管是分類還是檢測還是分割,主要是計算機視覺領域,都可能會有不同程度的提升效果。
到此,相信大家對“YOLOv5改進之添加SE注意力機制是什么”有了更深的了解,不妨來實際操作一番吧!這里是億速云網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。