您好,登錄后才能下訂單哦!
這篇文章主要介紹“使用numpy對數組求平均時怎么忽略nan值”,在日常操作中,相信很多人在使用numpy對數組求平均時怎么忽略nan值問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”使用numpy對數組求平均時怎么忽略nan值”的疑惑有所幫助!接下來,請跟著小編一起來學習吧!
在對numpy數組求平均np.mean()或者求數組中最大最小值np.max()/np.min()時,如果數組中有nan,此時求得的結果為:nan,那么該如何忽略其中的nan呢?
此時應該用另一個方法
np.nanmean()
,np.nanmax()
,np.nanmin()
import numpy as np A = np.array([[ 7, 4, 5, 7000], [ 1, 900, 9, nan], [ 5, -1000, nan, 100], [nan, nan, 3, 1000]]) #Compute NaN-norms L1_norm = np.nansum(np.abs(A), axis=1) L2_norm = np.sqrt(np.nansum(A**2, axis=1)) max_norm = np.nanmax(np.abs(A), axis=1) #Normalize rows A_L1 = A / L1_norm[:,np.newaxis] # A.values if Dataframe A_L2 = A / L2_norm[:,np.newaxis] A_max = A / max_norm[:,np.newaxis] #Check that it worked L1_norm_after = np.nansum(np.abs(A_L1), axis=1) L2_norm_after = np.sqrt(np.nansum(A_L2**2, axis=1)) max_norm_after = np.nanmax(np.abs(A_max), axis=1) In[182]: L1_norm_after Out[182]: array([1., 1., 1., 1.]) In[183]: L2_norm_after Out[183]: array([1., 1., 1., 1.]) In[184]: max_norm_after Out[184]: array([1., 1., 1., 1.])
rom numpy import nan, nanmean from sklearn.preprocessing import StandardScaler scaler = StandardScaler() A = [[ 7, 4, 5, 7000], [ 1, 900, 9, nan], [ 5, -1000, nan, 100], [nan, nan, 3, 1000]] scaler.fit(A) In [45]: scaler.mean_ Out[45]: array([4.33333333, -32., 5.66666667, 2700.]) In [46]: scaler.transform(A) Out[46]: array([[ 1.06904497, 0.04638641, -0.26726124, 1.40399977], [-1.33630621, 1.20089267, 1.33630621, nan], [ 0.26726124, -1.24727908, nan, -0.84893009], [ nan, nan, -1.06904497, -0.55506968]]) In [54]: nanmean(scaler.transform(A), axis=0) Out[54]: array([ 1.48029737e-16, 0.00000000e+00, -1.48029737e-16,0.00000000e+00])
到此,關于“使用numpy對數組求平均時怎么忽略nan值”的學習就結束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學習,快去試試吧!若想繼續學習更多相關知識,請繼續關注億速云網站,小編會繼續努力為大家帶來更多實用的文章!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。