您好,登錄后才能下訂單哦!
本篇內容主要講解“Java平衡二叉樹怎么實現”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“Java平衡二叉樹怎么實現”吧!
簡單來說,就是方便搜索的二叉樹,是一種具備特定結構的二叉樹,即,對于節點n,其左子樹的所有節點的值都小于等于其值,其右子樹的所有節點的值都大于等于其值。
以序列2,4,1,3,5,10,9,8為例,如果以二叉搜索樹建樹的方式,我們建立出來的逐個步驟應該為
第一步:
第二步:
第三步:
第四步:
第五步:
第六步:
第七步:
第八步:
按照不平衡的普通方法生成的二叉搜索樹就是這么一個樣子。其實現代碼如下:
package com.chaojilaji.book.searchtree; import com.chaojilaji.auto.autocode.utils.Json; import java.util.Objects; public class SearchTreeUtils { public static SearchTree buildTree(SearchTree searchTree, Integer value) { if (value >= searchTree.getValue()) { if (Objects.isNull(searchTree.getRightChild())) { SearchTree searchTree1 = new SearchTree(); searchTree1.setValue(value); searchTree.setRightChild(searchTree1); } else { buildTree(searchTree.getRightChild(), value); } } else { if (Objects.isNull(searchTree.getLeftChild())) { SearchTree searchTree1 = new SearchTree(); searchTree1.setValue(value); searchTree.setLeftChild(searchTree1); } else { buildTree(searchTree.getLeftChild(), value); } } return searchTree; } public static void main(String[] args) { int[] a = new int[]{2, 4, 1, 3, 5, 10, 9, 8}; SearchTree searchTree = new SearchTree(); searchTree.setValue(a[0]); for (int i = 1; i < a.length; i++) { searchTree = buildTree(searchTree,a[i]); } System.out.println(Json.toJson(searchTree)); } }
運行的結果如下:
{ "value": 2, "left_child": { "value": 1, "left_child": null, "right_child": null }, "right_child": { "value": 4, "left_child": { "value": 3, "left_child": null, "right_child": null }, "right_child": { "value": 5, "left_child": null, "right_child": { "value": 10, "left_child": { "value": 9, "left_child": { "value": 8, "left_child": null, "right_child": null }, "right_child": null }, "right_child": null } } } }
與我們的目標結果是一致的。
好了,那我們本節就完畢了。可是轉過頭可能你也發現了,直接生成的這個二叉搜索樹似乎有點太長了,層數有點太多了,一般來說,一個長度為8的序列,四層結構的二叉樹就可以表現出來了,這里卻使用了六層,顯然這樣的結果不盡人意,同時太深的層數,也增加了查找的時間復雜度。
這就給我們的樹提了要求,我們需要將目前構造出來的樹平衡一下,讓這棵二叉搜索樹的左右子樹“重量”最好差不多。
首先需要掌握兩個概念
平衡因子
旋轉
平衡因子就是對于這棵二叉搜索樹的每個節點來說,其左子樹的高度減去右子樹的高度即為該節點的平衡因子,該數值能很快的辨別出該節點究竟是左子樹高還是右子樹高。在平衡二叉樹中規定,當一個節點的平衡因子的絕對值大于等于2的時候,我們就認為該節點不平衡,需要進行調整。那么這種調整的手段稱之為節點與節點的旋轉,通俗來說,旋轉就是指的節點間的指向關系發生變化,在c語言中就是指針指向的切換。
在調用旋轉之前,我們需要判斷整棵樹是否平衡,即,這棵二叉搜索樹的所有平衡因子是否有絕對值大于等于2的,如果有,就找出最小的一棵子樹。可以確定的是,如果前一次二叉搜索樹是平衡的,那么此時如果加一個節點進去,造成不平衡,那么節點從葉子開始回溯,找到的第一個大于等于2的節點勢必為最小不平衡子樹的根節點。
對于這棵最小不平衡的子樹,我們需要得到兩個值,即根節點的平衡因子a,以及左右子樹根節點中平衡因子絕對值較大者的平衡因子b。
我們可以將需要旋轉的類型抽象為以下四種:
1.左左型(正正型,即 a>0 && b>0)
左左型最后想要達到的目標是第二個節點成為根節點,第一個節點成為第二個節點的右節點。
所以用偽代碼展示就是(設a1,a2,a3分別為圖里面從上到下的三個節點)
a2的右子樹 = (合并(a2的右子樹,a1的右子樹) + a1頂點值) 一起構成的二叉搜索樹;
返回 a2
2.左右型(正負型,即 a>0 && b<0)
設a1,a2,a3分別為圖里面從上到下的三個節點
首先應該通過將a3和a2調換上下位置,使之變成左左型,然后再調用左左型的方法就完成了。
從左右型調換成左左型,即將a2及其左子樹成為a3左子樹的一部分,然后將a1的左子樹置為a3即可。
偽代碼如下:
a3的左子樹 = a2及其左子樹與a3的左子樹合并成的一棵二叉搜索樹;
a1的左子樹 = a3;
3.右右型(負負型,即 a<0 && b<0)
設a1,a2,a3分別為圖里面從上到下的三個節點
右右型與左左型類似,要達到的目的就是a1成為a2左子樹的一部分,偽代碼為:
a2的左子樹 = (合并a2的左子樹和a1的左子樹)+ a1頂點的值構成的二叉搜索樹;
返回a2
4.右左型(負正型,即 a<0 && b>0)
設a1,a2,a3分別為圖里面從上到下的三個節點
右左型需要先轉換成右右型,然后在調用右右型的方法即可。
從右左型到右右型,即需要將a2及其右子樹成為a3右子樹的一部分,然后將a1的右子樹置為a3即可。
偽代碼如下:
a3的右子樹 = a2及其右子樹與a3的右子樹合并成的一棵二叉搜索樹;
a1的右子樹 = a3;
從上面的分析可以得出,我們不僅僅需要實現旋轉的方法,還需要實現合并二叉樹等方法,這些方法都是基礎方法,讀者需要確保會快速寫出來。
請讀者朋友們根據上面的內容,先嘗試寫出集中平衡化的方法。
平衡二叉搜索樹建樹,需要在二叉搜索樹建樹的基礎上加上平衡的過程,即子樹之間指針轉換的問題,同時,由于這種指針轉換引起的子樹的子樹也會產生不平衡,所以上面提到的四種旋轉調整方式都是遞歸的。
首先,先構建節點基礎結構:
public class SearchTree { private Integer value; private SearchTree leftChild; private SearchTree rightChild; private Integer balanceNumber = 0; private Integer height = 0; }
值,高度,平衡因子,左子樹,右子樹
這是計算二叉搜索樹中每個平衡因子的基礎,我們設最低層為高度1,則計算節點高度的代碼為:
public static Integer countHeight(SearchTree searchTree) { if (Objects.isNull(searchTree)) { return 0; } searchTree.setHeight(Math.max(countHeight(searchTree.getLeftChild()), countHeight(searchTree.getRightChild())) + 1); return searchTree.getHeight(); }
這里有個半動態規劃的結論:當前節點的高度,等于左右子樹的最大高度+1;這里的寫法有點樹形DP的味道。
public static void countBalanceNumber(SearchTree searchTree, MaxNumber max, SearchTree fatherTree, Integer type) { if (Objects.nonNull(searchTree.getValue())) { if (Objects.isNull(searchTree.getLeftChild()) && Objects.nonNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(-searchTree.getRightChild().getHeight()); } if (Objects.nonNull(searchTree.getLeftChild()) && Objects.isNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight()); } if (Objects.isNull(searchTree.getLeftChild()) && Objects.isNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(0); } if (Objects.nonNull(searchTree.getLeftChild()) && Objects.nonNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight() - searchTree.getRightChild().getHeight()); } } if (Objects.nonNull(searchTree.getLeftChild())) { countBalanceNumber(searchTree.getLeftChild(), max, searchTree, 1); } if (Objects.nonNull(searchTree.getRightChild())) { countBalanceNumber(searchTree.getRightChild(), max, searchTree, 2); } }
本質上講,平衡因子就是左子樹高度減去右子樹高度,注意這里左右子樹都有可能不存在,所以加入了一堆特判。
判斷當前二叉樹是否平衡
static class MaxNumber { public Integer max; public SearchTree childTree; public SearchTree fatherTree; public Integer flag = 0; // 0 代表自己就是根,1代表childTree是左子樹,2代表childTree是右子樹 } public static MaxNumber checkBalance(SearchTree searchTree) { MaxNumber max = new MaxNumber(); max.max = 0; countBalanceNumber(searchTree, max, null, 0); return max; } public static void countBalanceNumber(SearchTree searchTree, MaxNumber max, SearchTree fatherTree, Integer type) { if (Objects.nonNull(searchTree.getValue())) { if (Objects.isNull(searchTree.getLeftChild()) && Objects.nonNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(-searchTree.getRightChild().getHeight()); } if (Objects.nonNull(searchTree.getLeftChild()) && Objects.isNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight()); } if (Objects.isNull(searchTree.getLeftChild()) && Objects.isNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(0); } if (Objects.nonNull(searchTree.getLeftChild()) && Objects.nonNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight() - searchTree.getRightChild().getHeight()); } } if (Objects.nonNull(searchTree.getLeftChild())) { countBalanceNumber(searchTree.getLeftChild(), max, searchTree, 1); } if (Objects.nonNull(searchTree.getRightChild())) { countBalanceNumber(searchTree.getRightChild(), max, searchTree, 2); } if (Math.abs(searchTree.getBalanceNumber()) >= Math.abs(max.max)) { if (Math.abs(searchTree.getBalanceNumber()) == Math.abs(max.max) && max.childTree == null) { max.childTree = searchTree; max.fatherTree = fatherTree; max.flag = type; max.max = searchTree.getBalanceNumber(); } if (Math.abs(searchTree.getBalanceNumber()) > Math.abs(max.max)) { max.childTree = searchTree; max.fatherTree = fatherTree; max.flag = type; max.max = searchTree.getBalanceNumber(); } } }
其中,MaxNumber類是為了保存第一棵不平衡的子樹而存在的結構,為了使這棵子樹平衡之后能重新回到整棵樹中,需要在MaxNumber中存儲當前子樹父節點,同時標明當前子樹是父節點的左子樹還是右子樹,還是本身。
public static void getAllValue(SearchTree tree, Set<Integer> sets) { if (Objects.isNull(tree)) return; if (Objects.nonNull(tree.getValue())) { sets.add(tree.getValue()); } if (Objects.nonNull(tree.getLeftChild())) { getAllValue(tree.getLeftChild(), sets); } if (Objects.nonNull(tree.getRightChild())) { getAllValue(tree.getRightChild(), sets); } } /** * 合并兩棵二叉搜索樹 * * @param a * @param b * @return */ public static SearchTree mergeTree(SearchTree a, SearchTree b) { Set<Integer> vals = new HashSet<>(); getAllValue(b, vals); for (Integer c : vals) { a = buildTree(a, c); } return a; }
將一棵樹轉成數字集合,然后通過建樹的方式建到另外一棵樹上即可。
1.左左型旋轉 /** * 左左 * * @param searchTree * @return */ public static SearchTree leftRotate1(SearchTree father, SearchTree searchTree) { SearchTree b = father; SearchTree newRight = mergeTree(father.getRightChild(), searchTree.getRightChild()); newRight = buildTree(newRight, b.getValue()); countHeight(newRight); while (Math.abs(checkBalance(newRight).childTree.getBalanceNumber()) >= 2) { newRight = rotate(checkBalance(newRight).childTree); countHeight(newRight); } searchTree.setRightChild(newRight); return searchTree; }
2.右右型旋轉
/** * 右右 * @param father * @param searchTree * @return */ public static SearchTree rightRotate1(SearchTree father, SearchTree searchTree) { SearchTree b = father; SearchTree newLeft = mergeTree(father.getLeftChild(), searchTree.getLeftChild()); newLeft = buildTree(newLeft, b.getValue()); countHeight(newLeft); while (Math.abs(checkBalance(newLeft).childTree.getBalanceNumber()) >= 2) { newLeft = rotate(checkBalance(newLeft).childTree); countHeight(newLeft); } searchTree.setLeftChild(newLeft); return searchTree; }
3.左右型旋轉
/** * 左右 * * @param searchTree * @return */ public static SearchTree rightRotate2(SearchTree father, SearchTree searchTree) { SearchTree a1 = father; SearchTree a2 = searchTree; SearchTree a3 = searchTree.getRightChild(); SearchTree newLeft = mergeTree(a2.getLeftChild(), a3.getLeftChild()); newLeft = buildTree(newLeft, a2.getValue()); countHeight(newLeft); while (Math.abs(checkBalance(newLeft).childTree.getBalanceNumber()) >= 2) { newLeft = rotate(checkBalance(newLeft).childTree); countHeight(newLeft); } a3.setLeftChild(newLeft); a1.setLeftChild(a3); return a1; }
4.右左型旋轉
/** * 右左 * * @param searchTree * @return */ public static SearchTree leftRotate2(SearchTree father, SearchTree searchTree) { SearchTree a1 = father; SearchTree a2 = searchTree; SearchTree a3 = searchTree.getLeftChild(); SearchTree newRight = mergeTree(a2.getRightChild(), a3.getRightChild()); newRight = buildTree(newRight, a2.getValue()); countHeight(newRight); while (Math.abs(checkBalance(newRight).childTree.getBalanceNumber()) >= 2) { newRight = rotate(checkBalance(newRight).childTree); countHeight(newRight); } a3.setRightChild(newRight); a1.setRightChild(a3); return a1; }
旋轉調用函數:
public static SearchTree rotate(SearchTree searchTree) { int a = searchTree.getBalanceNumber(); if (Math.abs(a) < 2) { return searchTree; } int b = Objects.isNull(searchTree.getLeftChild()) ? 0 : searchTree.getLeftChild().getBalanceNumber(); int c = Objects.isNull(searchTree.getRightChild()) ? 0 : searchTree.getRightChild().getBalanceNumber(); if (a > 0) { if (b > 0) { // TODO: 2022/1/13 左左 searchTree = leftRotate1(searchTree, searchTree.getLeftChild()); } else { // TODO: 2022/1/13 左右 searchTree = rightRotate2(searchTree, searchTree.getLeftChild()); searchTree = leftRotate1(searchTree, searchTree.getLeftChild()); } } else { if (c > 0) { // TODO: 2022/1/13 右左 searchTree = leftRotate2(searchTree, searchTree.getRightChild()); searchTree = rightRotate1(searchTree, searchTree.getRightChild()); } else { // TODO: 2022/1/13 右右 searchTree = rightRotate1(searchTree, searchTree.getRightChild()); } } return searchTree; }
package com.chaojilaji.book.searchtree; import com.chaojilaji.auto.autocode.utils.Json; import com.chaojilaji.book.tree.Handle; import com.chaojilaji.book.tree.Tree; import org.omg.CORBA.OBJ_ADAPTER; import java.util.HashSet; import java.util.Objects; import java.util.Set; public class SearchTreeUtils { static class MaxNumber { public Integer max; public SearchTree childTree; public SearchTree fatherTree; public Integer flag = 0; // 0 代表自己就是根,1代表childTree是左子樹,2代表childTree是右子樹 } public static SearchTree rotate(SearchTree searchTree) { int a = searchTree.getBalanceNumber(); if (Math.abs(a) < 2) { return searchTree; } int b = Objects.isNull(searchTree.getLeftChild()) ? 0 : searchTree.getLeftChild().getBalanceNumber(); int c = Objects.isNull(searchTree.getRightChild()) ? 0 : searchTree.getRightChild().getBalanceNumber(); if (a > 0) { if (b > 0) { // TODO: 2022/1/13 左左 searchTree = leftRotate1(searchTree, searchTree.getLeftChild()); } else { // TODO: 2022/1/13 左右 searchTree = rightRotate2(searchTree, searchTree.getLeftChild()); searchTree = leftRotate1(searchTree, searchTree.getLeftChild()); } } else { if (c > 0) { // TODO: 2022/1/13 右左 searchTree = leftRotate2(searchTree, searchTree.getRightChild()); searchTree = rightRotate1(searchTree, searchTree.getRightChild()); } else { // TODO: 2022/1/13 右右 searchTree = rightRotate1(searchTree, searchTree.getRightChild()); } } return searchTree; } public static void getAllValue(SearchTree tree, Set<Integer> sets) { if (Objects.isNull(tree)) return; if (Objects.nonNull(tree.getValue())) { sets.add(tree.getValue()); } if (Objects.nonNull(tree.getLeftChild())) { getAllValue(tree.getLeftChild(), sets); } if (Objects.nonNull(tree.getRightChild())) { getAllValue(tree.getRightChild(), sets); } } /** * 合并兩棵二叉搜索樹 * * @param a * @param b * @return */ public static SearchTree mergeTree(SearchTree a, SearchTree b) { Set<Integer> vals = new HashSet<>(); getAllValue(b, vals); for (Integer c : vals) { a = buildTree(a, c); } return a; } /** * 左左 * * @param searchTree * @return */ public static SearchTree leftRotate1(SearchTree father, SearchTree searchTree) { SearchTree b = father; SearchTree newRight = mergeTree(father.getRightChild(), searchTree.getRightChild()); newRight = buildTree(newRight, b.getValue()); countHeight(newRight); while (Math.abs(checkBalance(newRight).childTree.getBalanceNumber()) >= 2) { newRight = rotate(checkBalance(newRight).childTree); countHeight(newRight); } searchTree.setRightChild(newRight); return searchTree; } /** * 右左 * * @param searchTree * @return */ public static SearchTree leftRotate2(SearchTree father, SearchTree searchTree) { SearchTree a1 = father; SearchTree a2 = searchTree; SearchTree a3 = searchTree.getLeftChild(); SearchTree newRight = mergeTree(a2.getRightChild(), a3.getRightChild()); newRight = buildTree(newRight, a2.getValue()); countHeight(newRight); while (Math.abs(checkBalance(newRight).childTree.getBalanceNumber()) >= 2) { newRight = rotate(checkBalance(newRight).childTree); countHeight(newRight); // System.out.println(Json.toJson(newRight)); } a3.setRightChild(newRight); a1.setRightChild(a3); return a1; } /** * 右右 * @param father * @param searchTree * @return */ public static SearchTree rightRotate1(SearchTree father, SearchTree searchTree) { SearchTree b = father; SearchTree newLeft = mergeTree(father.getLeftChild(), searchTree.getLeftChild()); newLeft = buildTree(newLeft, b.getValue()); countHeight(newLeft); // TODO: 2022/1/13 合并后的也有可能有問題 while (Math.abs(checkBalance(newLeft).childTree.getBalanceNumber()) >= 2) { newLeft = rotate(checkBalance(newLeft).childTree); countHeight(newLeft); // System.out.println(Json.toJson(newLeft)); } searchTree.setLeftChild(newLeft); return searchTree; } /** * 左右 * * @param searchTree * @return */ public static SearchTree rightRotate2(SearchTree father, SearchTree searchTree) { SearchTree a1 = father; SearchTree a2 = searchTree; SearchTree a3 = searchTree.getRightChild(); SearchTree newLeft = mergeTree(a2.getLeftChild(), a3.getLeftChild()); newLeft = buildTree(newLeft, a2.getValue()); countHeight(newLeft); while (Math.abs(checkBalance(newLeft).childTree.getBalanceNumber()) >= 2) { newLeft = rotate(checkBalance(newLeft).childTree); countHeight(newLeft); } a3.setLeftChild(newLeft); a1.setLeftChild(a3); return a1; } public static MaxNumber checkBalance(SearchTree searchTree) { MaxNumber max = new MaxNumber(); max.max = 0; countBalanceNumber(searchTree, max, null, 0); return max; } public static Integer countHeight(SearchTree searchTree) { if (Objects.isNull(searchTree)) { return 0; } searchTree.setHeight(Math.max(countHeight(searchTree.getLeftChild()), countHeight(searchTree.getRightChild())) + 1); return searchTree.getHeight(); } public static void countBalanceNumber(SearchTree searchTree, MaxNumber max, SearchTree fatherTree, Integer type) { if (Objects.nonNull(searchTree.getValue())) { if (Objects.isNull(searchTree.getLeftChild()) && Objects.nonNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(-searchTree.getRightChild().getHeight()); } if (Objects.nonNull(searchTree.getLeftChild()) && Objects.isNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight()); } if (Objects.isNull(searchTree.getLeftChild()) && Objects.isNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(0); } if (Objects.nonNull(searchTree.getLeftChild()) && Objects.nonNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight() - searchTree.getRightChild().getHeight()); } } if (Objects.nonNull(searchTree.getLeftChild())) { countBalanceNumber(searchTree.getLeftChild(), max, searchTree, 1); } if (Objects.nonNull(searchTree.getRightChild())) { countBalanceNumber(searchTree.getRightChild(), max, searchTree, 2); } if (Math.abs(searchTree.getBalanceNumber()) >= Math.abs(max.max)) { if (Math.abs(searchTree.getBalanceNumber()) == Math.abs(max.max) && max.childTree == null) { max.childTree = searchTree; max.fatherTree = fatherTree; max.flag = type; max.max = searchTree.getBalanceNumber(); } if (Math.abs(searchTree.getBalanceNumber()) > Math.abs(max.max)) { max.childTree = searchTree; max.fatherTree = fatherTree; max.flag = type; max.max = searchTree.getBalanceNumber(); } } } public static SearchTree buildTree(SearchTree searchTree, Integer value) { if (Objects.isNull(searchTree)) { searchTree = new SearchTree(); } if (Objects.isNull(searchTree.getValue())) { searchTree.setValue(value); return searchTree; } if (value >= searchTree.getValue()) { if (Objects.isNull(searchTree.getRightChild())) { SearchTree searchTree1 = new SearchTree(); searchTree1.setValue(value); searchTree.setRightChild(searchTree1); } else { buildTree(searchTree.getRightChild(), value); } } else { if (Objects.isNull(searchTree.getLeftChild())) { SearchTree searchTree1 = new SearchTree(); searchTree1.setValue(value); searchTree.setLeftChild(searchTree1); } else { buildTree(searchTree.getLeftChild(), value); } } return searchTree; } public static void main(String[] args) { // int[] a = new int[]{2, 4, 1, 3, 5, 10, 9, 8}; int[] a = new int[]{2, 4, 1, 3, 5, 10, 9, 8, 6, 7}; SearchTree searchTree = new SearchTree(); for (int i = 0; i < a.length; i++) { searchTree = buildTree(searchTree, a[i]); countHeight(searchTree); MaxNumber maxNumber = checkBalance(searchTree); SearchTree searchTree1 = maxNumber.childTree; if (Math.abs(searchTree1.getBalanceNumber()) >= 2) { searchTree1 = rotate(searchTree1); if (maxNumber.flag == 0) { maxNumber.fatherTree = searchTree1; searchTree = searchTree1; } else if (maxNumber.flag == 1) { maxNumber.fatherTree.setLeftChild(searchTree1); } else if (maxNumber.flag == 2) { maxNumber.fatherTree.setRightChild(searchTree1); } countHeight(searchTree); } } System.out.println("最終為\n" + Json.toJson(searchTree)); } }
以序列2, 4, 1, 3, 5, 10, 9, 8, 6, 7為例,構造的平衡二叉搜索樹結構為
{ "value": 4, "left_child": { "value": 2, "left_child": { "value": 1, "left_child": null, "right_child": null, "balance_number": 0, "height": 1 }, "right_child": { "value": 3, "left_child": null, "right_child": null, "balance_number": 0, "height": 1 }, "balance_number": 0, "height": 2 }, "right_child": { "value": 8, "left_child": { "value": 6, "left_child": { "value": 5, "left_child": null, "right_child": null, "balance_number": 0, "height": 1 }, "right_child": { "value": 7, "left_child": null, "right_child": null, "balance_number": 0, "height": 1 }, "balance_number": 0, "height": 2 }, "right_child": { "value": 10, "left_child": { "value": 9, "left_child": null, "right_child": null, "balance_number": 0, "height": 1 }, "right_child": null, "balance_number": 1, "height": 2 }, "balance_number": 0, "height": 3 }, "balance_number": -1, "height": 4 }
到此,相信大家對“Java平衡二叉樹怎么實現”有了更深的了解,不妨來實際操作一番吧!這里是億速云網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。