您好,登錄后才能下訂單哦!
小編給大家分享一下使用tensorflow2自定義損失函數需要注意什么,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!
Keras的核心原則是逐步揭示復雜性,可以在保持相應的高級便利性的同時,對操作細節進行更多控制。當我們要自定義fit中的訓練算法時,可以重寫模型中的train_step方法,然后調用fit來訓練模型。
這里以tensorflow2官網中的例子來說明:
import numpy as np import tensorflow as tf from tensorflow import keras x = np.random.random((1000, 32)) y = np.random.random((1000, 1)) class CustomModel(keras.Model): tf.random.set_seed(100) def train_step(self, data): # Unpack the data. Its structure depends on your model and # on what you pass to `fit()`. x, y = data with tf.GradientTape() as tape: y_pred = self(x, training=True) # Forward pass # Compute the loss value # (the loss function is configured in `compile()`) loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses) # Compute gradients trainable_vars = self.trainable_variables gradients = tape.gradient(loss, trainable_vars) # Update weights self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Update metrics (includes the metric that tracks the loss) self.compiled_metrics.update_state(y, y_pred) # Return a dict mapping metric names to current value return {m.name: m.result() for m in self.metrics} # Construct and compile an instance of CustomModelinputs = keras.Input(shape=(32,)) outputs = keras.layers.Dense(1)(inputs) model = CustomModel(inputs, outputs) model.compile(optimizer="adam", loss=tf.losses.MSE, metrics=["mae"])# Just use `fit` as usualmodel.fit(x, y, epochs=1, shuffle=False) 32/32 [==============================] - 0s 1ms/step - loss: 0.2783 - mae: 0.4257
這里的loss是tensorflow庫中實現了的損失函數,如果想自定義損失函數,然后將損失函數傳入model.compile中,能正常按我們預想的work嗎?
答案竟然是否定的,而且沒有錯誤提示,只是loss計算不會符合我們的預期。
def custom_mse(y_true, y_pred): return tf.reduce_mean((y_true - y_pred)**2, axis=-1) a_true = tf.constant([1., 1.5, 1.2]) a_pred = tf.constant([1., 2, 1.5]) custom_mse(a_true, a_pred) tf.losses.MSE(a_true, a_pred)
以上結果證實了我們自定義loss的正確性,下面我們直接將自定義的loss置入compile中的loss參數中,看看會發生什么。
my_model = CustomModel(inputs, outputs) my_model.compile(optimizer="adam", loss=custom_mse, metrics=["mae"]) my_model.fit(x, y, epochs=1, shuffle=False) 32/32 [==============================] - 0s 820us/step - loss: 0.1628 - mae: 0.3257
我們看到,這里的loss與我們與標準的tf.losses.MSE明顯不同。這說明我們自定義的loss以這種方式直接傳遞進model.compile中,是完全錯誤的操作。
正確運用自定義loss的姿勢是什么呢?下面揭曉。
loss_tracker = keras.metrics.Mean(name="loss") mae_metric = keras.metrics.MeanAbsoluteError(name="mae") class MyCustomModel(keras.Model): tf.random.set_seed(100) def train_step(self, data): # Unpack the data. Its structure depends on your model and # on what you pass to `fit()`. x, y = data with tf.GradientTape() as tape: y_pred = self(x, training=True) # Forward pass # Compute the loss value # (the loss function is configured in `compile()`) loss = custom_mse(y, y_pred) # loss += self.losses # Compute gradients trainable_vars = self.trainable_variables gradients = tape.gradient(loss, trainable_vars) # Update weights self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Compute our own metrics loss_tracker.update_state(loss) mae_metric.update_state(y, y_pred) return {"loss": loss_tracker.result(), "mae": mae_metric.result()} @property def metrics(self): # We list our `Metric` objects here so that `reset_states()` can be # called automatically at the start of each epoch # or at the start of `evaluate()`. # If you don't implement this property, you have to call # `reset_states()` yourself at the time of your choosing. return [loss_tracker, mae_metric] # Construct and compile an instance of CustomModelinputs = keras.Input(shape=(32,)) outputs = keras.layers.Dense(1)(inputs) my_model_beta = MyCustomModel(inputs, outputs) my_model_beta.compile(optimizer="adam")# Just use `fit` as usualmy_model_beta.fit(x, y, epochs=1, shuffle=False) 32/32 [==============================] - 0s 960us/step - loss: 0.2783 - mae: 0.4257
終于,通過跳過在 compile() 中傳遞損失函數,而在 train_step 中手動完成所有計算內容,我們獲得了與之前默認tf.losses.MSE完全一致的輸出,這才是我們想要的結果。
以上是“使用tensorflow2自定義損失函數需要注意什么”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。