您好,登錄后才能下訂單哦!
本篇內容介紹了“Linux內存尋址是什么”的有關知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領大家學習一下如何處理這些情況吧!希望大家仔細閱讀,能夠學有所成!
早期的程序都是直接運行在物理地址上,也就是說這個程序所需要的空間不超過該機器的物理內存就不會有問題,但實際場景中都是多任務,多進程的,這種物理地址reserved給各個進程是不靠譜的。
舉個栗子:假如有3個程序a,b,c,a需要10M,b需要100M,c需要20M,總內存就120M,按照之前的分配方式,前10M給a,10M-110M給b,系統還剩10M,但是c需要20M,顯然剩下的內存是不夠c用的。怎么辦?
可能你會想到當c程序跑的時候把b程序數據寫到磁盤上,等運行b的時候再數據從磁盤寫回來,先不說無法滿足b,c程序并行跑的需求,就連頻繁的io操作帶來的耗時問題也是無法接收的。
除了效率問題,reserved給進程的空間如果需要被別的進程訪問會出現崩潰。比如a進程訪問的空間是前10M,但是a程序中有一段代碼訪問10-110M的話就有可能導致b程序的崩潰,所以進程的地址空間需要彼此隔離。
現實場景中不可能是單任務在分好的內存中運行,當多任務并行跑的情況下在動態申請釋放內存的時候有可能申請到其它進程里的地址,這時候需要重定位到新的地址。
內存管理無非就是想辦法解決上面三個問題,如何提高內存的使用效率?如何使進程的地址空間隔離?如何解決程序運行時的重定位問題?
內存管理如何從虛擬地址映射到物理地址:
內存管理從虛擬地址映射到物理地址的過程也就是解決上面3個問題的過程。內存管理用分段機制和分頁機制分別解決了上面的3個問題,大概過程如下圖:
只要程序分了段,把整個段平移到任何位置后,段內的地址相對段基址是不變的,無論段基址是多少,只要給出段內偏移地址,cpu就能訪問到正確的指令。于是加載用戶程序時,只要將整個段的內容復制到新的位置,再將段基址寄存器中的地址改成該地址,程序便可準確地運行,因為程序中用的是段內偏移地址,相對新的段基址,該偏移地址處的內容內容還是一樣的。
可以看出分段機制解決了進程間隔離和重定位的問題。這個動作是在硬件里做的,但是有的硬件是沒有分段機制的,作為跨平臺的linux就用了具有更通用性的分頁機制來解決線性地址到虛擬地址到物理地址的轉換。
linux為了兼容32位和64位,通常采用四級頁表,頁全局目錄,頁上級目錄,頁中間目錄,頁表:
這里不詳細解釋linux是如何通過四級頁表來做線性地址(虛擬地址)到物理地址的轉化。
進程在切換的時候就是根據task_struct找到mm_struct里的pgd字段,取得新進程的頁全局目錄,然后填充到CR3寄存器,就完成了頁的切換。
動手看下mmu分頁尋址的過程:
上代碼:
可以看出虛擬地址ffff99b488d48000對應的物理地址是80000000c8d48000。這個過程也是mmu的過程。
“Linux內存尋址是什么”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業相關的知識可以關注億速云網站,小編將為大家輸出更多高質量的實用文章!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。