您好,登錄后才能下訂單哦!
這篇文章主要介紹了pytorch中如何抽取一個tensor的行,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
實驗代碼如下:
b=torch.Tensor([[[[10,2],[4,5],[7,8]],[[1,2],[4,5],[7,8]]]])
print(b.size())
(1, 2, 3, 2)
print(b[…,0])
tensor([[[10., 4., 7.],
[ 1., 4., 7.]]])
print(b[…,0].size())
(1, 2, 3)
print(b[…,2])
Traceback (most recent call last):
File “”, line 1, in
IndexError: index 2 is out of bounds for dimension 3 with size 2
print(b[0,…])
tensor([[[10., 2.],
[ 4., 5.],
[ 7., 8.]],
[[ 1., 2.],
[ 4., 5.],
[ 7., 8.]]])
print(b[0,…].size())
(2, 3, 2)
print(b[0,…,0].size())
(2, 3)
print(b[0,…,0])
tensor([[10., 4., 7.],
[ 1., 4., 7.]])
[…, 0]表示抽取tensor b的第4根軸上的第一列數字組成tensor,[0, …]表示抽取tensor b的第一根軸上的第一列數字組成tensor,[0, …, 0]表示抽取b的第一根和第四根軸上的第一列數字組成tensor。
還發現一個現象
print(b[…,0:])
tensor([[[[10., 2.],
[ 4., 5.],
[ 7., 8.]],
[[ 1., 2.],
[ 4., 5.],
[ 7., 8.]]]])
print(b[…,1:])
tensor([[[[2.],
[5.],
[8.]],
[[2.],
[5.],
[8.]]]])
print(b[…,2:])
tensor([], size=(1, 2, 3, 0))
補充:PyTorch中[..., 0]的使用案例
import torch
a = torch.rand((17, 24, 8))
b = a[..., 0]
c = a[:, :, 0]
print(b == c)
結果為True
import torch
a = torch.rand((64, 17, 24, 8))
b = a[..., 0]
c = a[:, :, :, 0]
print(b == c)
結果為True
可以看出[…, 0]相當于[:, :, … :, 0]
感謝你能夠認真閱讀完這篇文章,希望小編分享的“pytorch中如何抽取一個tensor的行”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。