您好,登錄后才能下訂單哦!
本篇內容主要講解“BCEWithLogitsLoss樣本不均衡怎么處理”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“BCEWithLogitsLoss樣本不均衡怎么處理”吧!
Examples::
>>> target = torch.ones([10, 64], dtype=torch.float32) # 64 classes, batch size = 10
>>> output = torch.full([10, 64], 0.999) # A prediction (logit)
>>> pos_weight = torch.ones([64]) # All weights are equal to 1
>>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
>>> criterion(output, target) # -log(sigmoid(0.999))
tensor(0.3135)
Args:
weight (Tensor, optional): a manual rescaling weight given to the loss
of each batch element. If given, has to be a Tensor of size `nbatch`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
pos_weight (Tensor, optional): a weight of positive examples.
Must be a vector with length equal to the number of classes.
對其中的參數pos_weight的使用存在疑惑,BCEloss里的例子pos_weight = torch.ones([64]) # All weights are equal to 1,不懂為什么會有64個class,因為BCEloss是針對二分類問題的loss,后經過檢索,得知還有多標簽分類,
多標簽分類就是多個標簽,每個標簽有兩個label(0和1),這類任務同樣可以使用BCEloss。
比如我們有正負兩類樣本,正樣本數量為100個,負樣本為400個,我們想要對正負樣本的loss進行加權處理,將正樣本的loss權重放大4倍,通過這樣的方式緩解樣本不均衡問題。
criterion = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([4]))
# pos_weight (Tensor, optional): a weight of positive examples.
# Must be a vector with length equal to the number of classes.
pos_weight里是一個tensor列表,需要和標簽個數相同,比如我們現在是二分類,只需要將正樣本loss的權重寫上即可。
如果是多標簽分類,有64個標簽,則
Examples::
>>> target = torch.ones([10, 64], dtype=torch.float32) # 64 classes, batch size = 10
>>> output = torch.full([10, 64], 0.999) # A prediction (logit)
>>> pos_weight = torch.ones([64]) # All weights are equal to 1
>>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
>>> criterion(output, target) # -log(sigmoid(0.999))
tensor(0.3135)
補充:Pytorch —— BCEWithLogitsLoss()的一些問題
torch.sigmoid() + torch.nn.BCELoss()
def ce_loss(y_pred, y_train, alpha=1):
p = torch.sigmoid(y_pred)
# p = torch.clamp(p, min=1e-9, max=0.99)
loss = torch.sum(- alpha * torch.log(p) * y_train
- torch.log(1 - p) * (1 - y_train))/len(y_train)
return loss~
import torch
import torch.nn as nn
torch.cuda.manual_seed(300) # 為當前GPU設置隨機種子
torch.manual_seed(300) # 為CPU設置隨機種子
def ce_loss(y_pred, y_train, alpha=1):
# 計算loss
p = torch.sigmoid(y_pred)
# p = torch.clamp(p, min=1e-9, max=0.99)
loss = torch.sum(- alpha * torch.log(p) * y_train
- torch.log(1 - p) * (1 - y_train))/len(y_train)
return loss
py_lossFun = nn.BCEWithLogitsLoss()
input = torch.randn((10000,1), requires_grad=True)
target = torch.ones((10000,1))
target.requires_grad_(True)
py_loss = py_lossFun(input, target)
py_loss.backward()
print("*********BCEWithLogitsLoss***********")
print("loss: ")
print(py_loss.item())
print("梯度: ")
print(input.grad)
input = input.detach()
input.requires_grad_(True)
self_loss = ce_loss(input, target)
self_loss.backward()
print("*********SelfCELoss***********")
print("loss: ")
print(self_loss.item())
print("梯度: ")
print(input.grad)
– 由上結果可知,我編寫的loss和pytorch中提供的j基本一致。
– 但是僅僅這樣就可以了嗎?NO! 下面介紹BCEWithLogitsLoss()的強大之處:
– BCEWithLogitsLoss()具有很好的對nan的處理能力,對于我寫的代碼(四層神經網絡,層之間的激活函數采用的是ReLU,輸出層激活函數采用sigmoid(),由于數據處理的問題,所以會導致我們編寫的CE的loss出現nan:原因如下:
–首先神經網絡輸出的pre_target較大,就會導致sigmoid之后的p為1,則torch.log(1 - p)為nan;
– 使用clamp(函數雖然會解除這個nan,但是由于在迭代過程中,網絡輸出可能越來越大(層之間使用的是ReLU),則導致我們寫的loss陷入到某一個數值而無法進行優化。但是BCEWithLogitsLoss()對這種情況下出現的nan有很好的處理,從而得到更好的結果。
– 我此實驗的目的是為了比較CE和FL的區別,自己編寫FL,則必須也要自己編寫CE,不能使用BCEWithLogitsLoss()。
二分類 + sigmoid()
使用sigmoid作為輸出層非線性表達的分類問題(雖然可以處理多分類問題,但是一般用于二分類,并且最后一層只放一個節點)
輸入格式
要求輸入的input和target均為float類型
到此,相信大家對“BCEWithLogitsLoss樣本不均衡怎么處理”有了更深的了解,不妨來實際操作一番吧!這里是億速云網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。