91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

CentOS7 Nvidia Docker環境如何搭建

發布時間:2022-03-24 16:36:03 來源:億速云 閱讀:225 作者:iii 欄目:web開發

本文小編為大家詳細介紹“CentOS7 Nvidia Docker環境如何搭建”,內容詳細,步驟清晰,細節處理妥當,希望這篇“CentOS7 Nvidia Docker環境如何搭建”文章能幫助大家解決疑惑,下面跟著小編的思路慢慢深入,一起來學習新知識吧。

環境:

系統:centos7 7.4 1708

顯卡:nvidia 1080ti

下載所有需要的東東

1、docker-ce yum repo :

2、nvidia-docker yum repo :

3、nvidia cuda yum repo :

4、nvidia cudnn :

這個東西需要注冊nvidia賬號,就不給直接下載地址了。

5、nvidia驅動

按自己的顯卡型號下載

6、nvidia docker file :

這里面可以看到很多dockerfile,選擇

9.0-base-centos7 (9.0/base/dockerfile)

其他的cuda9.1這些應該也可以用,另外有像devel和runtime這樣的,其實就是yum安裝的cuda包不太一樣,沒多大關系。

點進去后復制下來保存為dockerfile文件,但是之后搞的時候發現有點問題,修改了一下,可以從這兒復制

from centos:7

label maintainer "nvidia corporation <cudatools@nvidia.com>"

run nvidia_gpgkey_sum=d1be581509378368edeec8c1eb2958702feedf3bc3d17011adbf24efacce4ab5 && \

  curl -fssl https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/7fa2af80.pub | sed '/^version/d' > /etc/pki/rpm-gpg/rpm-gpg-key-nvidia && \

  echo "$nvidia_gpgkey_sum /etc/pki/rpm-gpg/rpm-gpg-key-nvidia" | sha256sum -c --strict -

#copy cuda.repo /etc/yum.repos.d/cuda.repo

env cuda_version 9.0.176

env cuda_pkg_version 9-0-$cuda_version-1

#run yum install -y \

#    cuda-cudart-$cuda_pkg_version && \

#  ln -s cuda-9.0 /usr/local/cuda && \

#  rm -rf /var/cache/yum/*
# nvidia-docker 1.0

label com.nvidia.volumes.needed="nvidia_driver"

label com.nvidia.cuda.version="${cuda_version}"

run echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && \

  echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf

env path /usr/local/nvidia/bin:/usr/local/cuda/bin:${path}

env ld_library_path /usr/local/nvidia/lib:/usr/local/nvidia/lib64

# nvidia-container-runtime

env nvidia_visible_devices all

env nvidia_driver_capabilities compute,utility

env nvidia_require_cuda "cuda>=9.0"

所有的文件

[root@localhost nvidia]# pwd
/root/nvidia
[root@localhost nvidia]# ll
total 420000
drwxr-xr-x. 2 root root   4096 feb 10 10:50 centos-gpu
-rw-r--r--. 1 root root   3335 jan 29 10:36 cuda-repo-rhel7-9.1.85-1.x86_64.rpm
-rw-r--r--. 1 root root 348817823 feb 6 16:26 cudnn-9.0-linux-x64-v7.tgz
-rw-r--r--. 1 root root   2424 feb 9 10:36 docker-ce.repo
-rw-r--r--. 1 root root    796 feb 9 17:11 nvidia-docker.repo
-rwxr-xr-x. 1 root root 81242220 jan 31 14:19 nvidia-linux-x86_64-390.25.run

centos-gpu里有dockerfile文件

準備工作

直接上命令,一看就明白

[root@localhost nvidia]# cp docker-ce.repo nvidia-docker.repo /etc/yum.repos.d/
[root@localhost nvidia]# rpm -ivh cuda-repo-rhel7-9.1.85-1.x86_64.rpm
[root@localhost nvidia]# yum install epel-release
[root@localhost nvidia]# yum install gcc gcc-c++

[root@localhost nvidia]# yum install kernel*

安裝驅動

[root@localhost nvidia]# echo "blacklist nouveau" >>/etc/modprobe.d/blacklist.conf
[root@localhost nvidia]# mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak dracut -v /boot/initramfs-$(uname -r).img $(uname -r) 
[root@localhost nvidia]# init 3 
[root@localhost nvidia]# chmod +x nvidia-linux-x86_64-390.25.run 
[root@localhost nvidia]# ./nvidia-linux-x86_64-390.25.run

大概步驟就是這樣,如果出現問題,可以直接網上找一找,應該不會太難

安裝和啟動docker

[root@localhost nvidia]# yum install docker-ce nvidia-docker
[root@localhost nvidia]# systemctl enable docker
[root@localhost nvidia]# systemctl start docker
[root@localhost nvidia]# systemctl enable nvidia-docker
[root@localhost nvidia]# systemctl start nvidia-docker

記得顯卡驅動一定要先裝好,nvidia-docker才能正常啟動

制作docker鏡像

[root@localhost nvidia]# yum install cuda-cudart-9-0-9.0.176-1
[root@localhost nvidia]# ln -s cuda-9.0 /usr/local/cuda
[root@localhost nvidia]# nvidia-docker build -t centos-nvidia /root/nvidia/centos-gpu

如果你是用的我修改的dockfile應該不會有什么問題,如果你是用的原版的,可能會在

#copy cuda.repo /etc/yum.repos.d/cuda.repo

出錯,但是咱們已經下載cuda 的 repo,并安裝了,所以這一步可以不用。

鏡像制作結束后,可以用命令 docker images 查看一下:

[root@localhost centos-gpu]# docker images
repository       tag         image id      created       size
centos-nvidia      latest       a02c8e0ad5ca    2 hours ago     207mb

如果有這一行應該就算是成功了。

生成docker

[root@localhost centos-gpu]# nvidia-docker run --name="centos-gpu2" -ti a02c /bin/bash
[root@34d532e76913 /]# nvidia-smi 
sat feb 10 03:42:20 2018    
+-----------------------------------------------------------------------------+
| nvidia-smi 390.25         driver version: 390.25          |
|-------------------------------+----------------------+----------------------+
| gpu name    persistence-m| bus-id    disp.a | volatile uncorr. ecc |
| fan temp perf pwr:usage/cap|     memory-usage | gpu-util compute m. |
|===============================+======================+======================|
|  0 geforce gtx 108... off | 00000000:02:00.0 off |         n/a |
| 23%  17c  p8   8w / 250w |   10mib / 11178mib |   0%   default |
+-------------------------------+----------------------+----------------------+
                                        
+-----------------------------------------------------------------------------+
| processes:                            gpu memory |
| gpu    pid  type  process name               usage   |
|=============================================================================|
| no running processes found                         |
+-----------------------------------------------------------------------------+
[root@34d532e76913 /]# exit

如果類似于上面的輸出結果,差不多就可以了。

使用docker

[root@localhost centos-gpu]# nvidia-docker ps -a
container id    image        command       created       status           ports        names
34d532e76913    a02c        "/bin/bash"     3 minutes ago    exited (0) 12 seconds ago            centos-gpu2
d16c2db2bf2e    a02c        "/bin/bash"     2 hours ago     exited (0) 19 minutes ago            centos-gpu
370671db8df1    3afd        "/bin/bash"     19 hours ago    exited (137) 3 hours ago            centos-dronemap
[root@localhost centos-gpu]# nvidia-docker start 34d5
34d5
[root@localhost centos-gpu]# nvidia-docker cp /root/nvidia/cuda-repo-rhel7-9.1.85-1.x86_64.rpm 34d532e76913:/root
[root@localhost centos-gpu]# nvidia-docker exec -ti 34d5 /bin/bash
[root@34d532e76913 /]# cd
[root@34d532e76913 ~]# ls
anaconda-ks.cfg cuda-repo-rhel7-9.1.85-1.x86_64.rpm
[root@34d532e76913 ~]# rpm -ivh cuda-repo-rhel7-9.1.85-1.x86_64.rpm 
warning: cuda-repo-rhel7-9.1.85-1.x86_64.rpm: header v3 rsa/sha512 signature, key id 7fa2af80: nokey
preparing...             ################################# [100%]
updating / installing...
  1:cuda-repo-rhel7-9.1.85-1     ################################# [100%]
[root@34d532e76913 ~]# yum install cuda-*9-0*

這里需要注意的是類似于 34d532e76913 這樣的編號,是docker自動生成的,運行的時候需要修改一下。

到目前基本上cuda的環境就搭建好了。

tensorflow

把下載的cudnn包用docker cp復制到docker中,解壓下來,將里面的lib64路徑添加到 /etc/ld.so.conf.d/nvidia.conf 中,運行ldconfig,就ok了。

上面的環境好了以后,再安裝python等等軟件,這就不說了。之后tensorflow的一些例子就可以在docker里運行了。當然你得安裝gpu版本的,才能發揮顯卡的威力。

讀到這里,這篇“CentOS7 Nvidia Docker環境如何搭建”文章已經介紹完畢,想要掌握這篇文章的知識點還需要大家自己動手實踐使用過才能領會,如果想了解更多相關內容的文章,歡迎關注億速云行業資訊頻道。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

云梦县| 锡林郭勒盟| 黑河市| 上林县| 大方县| 泾阳县| 定州市| 泸州市| 福清市| 方正县| 南江县| 云安县| 浦江县| 拉萨市| 民权县| 蒲城县| 大同市| 宿州市| 宁乡县| 弥勒县| 囊谦县| 鄂尔多斯市| 上思县| 河曲县| 德惠市| 宜兴市| 弋阳县| 铅山县| 盱眙县| 寿宁县| 宝清县| 搜索| 萨嘎县| 浪卡子县| 渝北区| 青川县| 佛冈县| 天津市| 阳春市| 阿克苏市| 荔波县|