91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

15、Hive函數詳解與案列實戰

發布時間:2020-02-14 11:09:52 來源:網絡 閱讀:927 作者:victor19901114 欄目:大數據

1、Hive系統內置函數

1.1、數值計算函數

1、取整函數: round

語法: round(double a)
返回值: BIGINT
說明: 返回double類型的整數值部分 (遵循四舍五入)

hive> select round(3.1415926) from tableName;
3
hive> select round(3.5) from tableName;
4
hive> create table tableName as select round(9542.158) from tableName;
2、指定精度取整函數: round

語法: round(double a, int d)
返回值: DOUBLE
說明: 返回指定精度d的double類型

hive> select round(3.1415926,4) from tableName;
3.1416
3、向下取整函數: floor

語法: floor(double a)
返回值: BIGINT
說明: 返回等于或者小于該double變量的最大的整數

hive> select floor(3.1415926) from tableName;
3
hive> select floor(25) from tableName;
25
4、向上取整函數: ceil

語法: ceil(double a)
返回值: BIGINT
說明: 返回等于或者大于該double變量的最小的整數

hive> select ceil(3.1415926) from tableName;
4
hive> select ceil(46) from tableName;
46
5、向上取整函數: ceiling

語法: ceiling(double a)
返回值: BIGINT
說明: 與ceil功能相同

hive> select ceiling(3.1415926) from tableName;
4
hive> select ceiling(46) from tableName;
46
6、取隨機數函數: rand

語法: rand(),rand(int seed)
返回值: double
說明: 返回一個0到1范圍內的隨機數。如果指定種子seed,則會等到一個穩定的隨機數序列

hive> select rand() from tableName;
0.5577432776034763
hive> select rand() from tableName;
0.6638336467363424
hive> select rand(100) from tableName;
0.7220096548596434
hive> select rand(100) from tableName;
0.7220096548596434

1.2、日期函數

1、UNIX時間戳轉日期函數: from_unixtime

語法: from_unixtime(bigint unixtime[, string format])
返回值: string
說明: 轉化UNIX時間戳(從1970-01-01 00:00:00 UTC到指定時間的秒數)到當前時區的時間格式

hive> select from_unixtime(1323308943,'yyyyMMdd') from tableName;
20111208
2、獲取當前UNIX時間戳函數: unix_timestamp

語法: unix_timestamp()
返回值: bigint
說明: 獲得當前時區的UNIX時間戳

hive> select unix_timestamp() from tableName;
1323309615
3、日期轉UNIX時間戳函數: unix_timestamp

語法: unix_timestamp(string date)
返回值: bigint
說明: 轉換格式為"yyyy-MM-dd HH:mm:ss"的日期到UNIX時間戳。如果轉化失敗,則返回0。

hive> select unix_timestamp('2011-12-07 13:01:03') from tableName;
1323234063
4、指定格式日期轉UNIX時間戳函數: unix_timestamp

語法: unix_timestamp(string date, string pattern)
返回值: bigint
說明: 轉換pattern格式的日期到UNIX時間戳。如果轉化失敗,則返回0。

hive> select unix_timestamp('20111207 13:01:03','yyyyMMdd HH:mm:ss') from tableName;
1323234063
5、日期時間轉日期函數: to_date

語法: to_date(string timestamp)
返回值: string
說明: 返回日期時間字段中的日期部分。

hive> select to_date('2011-12-08 10:03:01') from tableName;
2011-12-08
6、日期轉年函數: year

語法: year(string date)
返回值: int
說明: 返回日期中的年。

hive> select year('2011-12-08 10:03:01') from tableName;
2011
hive> select year('2012-12-08') from tableName;
2012
7、日期轉月函數: month

語法: month (string date)
返回值: int
說明: 返回日期中的月份。

hive> select month('2011-12-08 10:03:01') from tableName;
12
hive> select month('2011-08-08') from tableName;
8
8、日期轉天函數: day

語法: day (string date)
返回值: int
說明: 返回日期中的天。

hive> select day('2011-12-08 10:03:01') from tableName;
8
hive> select day('2011-12-24') from tableName;
24
9、日期轉小時函數: hour

語法: hour (string date)
返回值: int
說明: 返回日期中的小時。

hive> select hour('2011-12-08 10:03:01') from tableName;
10
10、日期轉分鐘函數: minute

語法: minute (string date)
返回值: int
說明: 返回日期中的分鐘。

hive> select minute('2011-12-08 10:03:01') from tableName;
3

hive> select second('2011-12-08 10:03:01') from tableName;
1
12、日期轉周函數: weekofyear

語法: weekofyear (string date)
返回值: int
說明: 返回日期在當前的周數。

hive> select weekofyear('2011-12-08 10:03:01') from tableName;
49
13、日期比較函數: datediff

語法: datediff(string enddate, string startdate)
返回值: int
說明: 返回結束日期減去開始日期的天數。

hive> select datediff('2012-12-08','2012-05-09') from tableName;
213
14、日期增加函數: date_add

語法: date_add(string startdate, int days)
返回值: string
說明: 返回開始日期startdate增加days天后的日期。

hive> select date_add('2012-12-08',10) from tableName;
2012-12-18
15、日期減少函數: date_sub

語法: date_sub (string startdate, int days)
返回值: string
說明: 返回開始日期startdate減少days天后的日期。

hive> select date_sub('2012-12-08',10) from tableName;
2012-11-28

1.3、條件函數

1、If函數: if

語法: if(boolean testCondition, T valueTrue, T valueFalseOrNull)
返回值: T
說明: 當條件testCondition為TRUE時,返回valueTrue;否則返回valueFalseOrNull

hive> select if(1=2,100,200) from tableName;
200
hive> select if(1=1,100,200) from tableName;
100
2、非空查找函數: COALESCE

語法: COALESCE(T v1, T v2, …)
返回值: T
說明: 返回參數中的第一個非空值;如果所有值都為NULL,那么返回NULL

hive> select COALESCE(null,'100','50') from tableName;
100
3、條件判斷函數:CASE

語法: CASE a WHEN b THEN c [WHEN d THEN e]* [ELSE f] END
返回值: T
說明:如果a等于b,那么返回c;如果a等于d,那么返回e;否則返回f

hive> Select case 100 when 50 then 'tom' when 100 then 'mary' else 'tim' end from tableName;
mary
hive> Select case 200 when 50 then 'tom' when 100 then 'mary' else 'tim' end from tableName;
tim
4、條件判斷函數:CASE

語法: CASE WHEN a THEN b [WHEN c THEN d]* [ELSE e] END
返回值: T
說明:如果a為TRUE,則返回b;如果c為TRUE,則返回d;否則返回e

hive> select case when 1=2 then 'tom' when 2=2 then 'mary' else 'tim' end from tableName;
mary
hive> select case when 1=1 then 'tom' when 2=2 then 'mary' else 'tim' end from tableName;
tom

1.4、字符串函數

1、字符串長度函數:length

語法: length(string A)
返回值: int
說明:返回字符串A的長度

hive> select length('abcedfg') from tableName;
2、字符串反轉函數:reverse

語法: reverse(string A)
返回值: string
說明:返回字符串A的反轉結果

hive> select reverse('abcedfg') from tableName;
gfdecba
3、字符串連接函數:concat

語法: concat(string A, string B…)
返回值: string
說明:返回輸入字符串連接后的結果,支持任意個輸入字符串

hive> select concat('abc','def','gh') from tableName;
abcdefgh
4、字符串連接并指定字符串分隔符:concat_ws

語法: concat_ws(string SEP, string A, string B…)
返回值: string
說明:返回輸入字符串連接后的結果,SEP表示各個字符串間的分隔符

hive> select concat_ws(',','abc','def','gh')from tableName;
abc,def,gh
5、字符串截取函數:substr

語法: substr(string A, int start),substring(string A, int start)
返回值: string
說明:返回字符串A從start位置到結尾的字符串

hive> select substr('abcde',3) from tableName;
cde
hive> select substring('abcde',3) from tableName;
cde
hive>  select substr('abcde',-1) from tableName;  (和ORACLE相同)
e
6、字符串截取函數:substr,substring

語法: substr(string A, int start, int len),substring(string A, int start, int len)
返回值: string
說明:返回字符串A從start位置開始,長度為len的字符串

hive> select substr('abcde',3,2) from tableName;
cd
hive> select substring('abcde',3,2) from tableName;
cd
hive>select substring('abcde',-2,2) from tableName;
de
7、字符串轉大寫函數:upper,ucase

語法: upper(string A) ucase(string A)
返回值: string
說明:返回字符串A的大寫格式

hive> select upper('abSEd') from tableName;
ABSED
hive> select ucase('abSEd') from tableName;
ABSED
8、字符串轉小寫函數:lower,lcase

語法: lower(string A) lcase(string A)
返回值: string
說明:返回字符串A的小寫格式

hive> select lower('abSEd') from tableName;
absed
hive> select lcase('abSEd') from tableName;
absed
9、去空格函數:trim

語法: trim(string A)
返回值: string
說明:去除字符串兩邊的空格

hive> select trim(' abc ') from tableName;
abc
10、url解析函數 parse_url

語法:
parse_url(string urlString, string partToExtract [, string keyToExtract])
返回值: string
說明:返回URL中指定的部分。partToExtract的有效值為:HOST, PATH,
QUERY, REF, PROTOCOL, AUTHORITY, FILE, and USERINFO.

hive> select parse_url
('https://www.tableName.com/path2/p.php?k1=v1&k2=v2#Ref1', 'HOST') 
from tableName;
www.tableName.com 
hive> select parse_url
('https://www.tableName.com/path2/p.php?k1=v1&k2=v2#Ref1', 'QUERY', 'k1')
 from tableName;
v1
11、json解析 get_json_object

語法: get_json_object(string json_string, string path)
返回值: string
說明:解析json的字符串json_string,返回path指定的內容。如果輸入的json字符串無效,那么返回NULL。

hive> select  get_json_object('{"store":{"fruit":\[{"weight":8,"type":"apple"},{"weight":9,"type":"pear"}], "bicycle":{"price":19.95,"color":"red"} },"email":"amy@only_for_json_udf_test.net","owner":"amy"}','$.owner') from tableName;
12、重復字符串函數:repeat

語法: repeat(string str, int n)
返回值: string
說明:返回重復n次后的str字符串

hive> select repeat('abc',5) from tableName;
abcabcabcabcabc
13、分割字符串函數: split

語法: split(string str, string pat)
返回值: array
說明: 按照pat字符串分割str,會返回分割后的字符串數組

hive> select split('abtcdtef','t') from tableName;
["ab","cd","ef"]

1.5、集合統計函數

1、個數統計函數: count

語法: count(*), count(expr), count(DISTINCT expr[, expr_.])
返回值:Int

說明: count(*)統計檢索出的行的個數,包括NULL值的行;count(expr)返回指定字段的非空值的個數;count(DISTINCT
expr[, expr_.])返回指定字段的不同的非空值的個數

hive> select count(*) from tableName;
20
hive> select count(distinct t) from tableName;
10
2、總和統計函數: sum

語法: sum(col), sum(DISTINCT col)
返回值: double
說明: sum(col)統計結果集中col的相加的結果;sum(DISTINCT col)統計結果中col不同值相加的結果

hive> select sum(t) from tableName;
100
hive> select sum(distinct t) from tableName;
70
3、平均值統計函數: avg

語法: avg(col), avg(DISTINCT col)
返回值: double
說明: avg(col)統計結果集中col的平均值;avg(DISTINCT col)統計結果中col不同值相加的平均值

hive> select avg(t) from tableName;
50
hive> select avg (distinct t) from tableName;
30
4、最小值統計函數: min

語法: min(col)
返回值: double
說明: 統計結果集中col字段的最小值

hive> select min(t) from tableName;
20
5、最大值統計函數: max

語法: maxcol)
返回值: double
說明: 統計結果集中col字段的最大值

hive> select max(t) from tableName;
120

1.6、復合型構建函數

1、Map類型構建: map

語法: map (key1, value1, key2, value2, …)
說明:根據輸入的key和value對構建map類型

create table score_map(name string, score map<string,int>)
row format delimited fields terminated by '\t' 
collection items terminated by ',' map keys terminated by ':';

創建數據內容如下并加載數據
cd /kkb/install/hivedatas/
vim score_map.txt

zhangsan    數學:80,語文:89,英語:95
lisi    語文:60,數學:80,英語:99

加載數據到hive表當中去
load data local inpath '/kkb/install/hivedatas/score_map.txt' overwrite into table score_map;

map結構數據訪問:
獲取所有的value:
select name,map_values(score) from score_map;

獲取所有的key:
select name,map_keys(score) from score_map;

按照key來進行獲取value值
select name,score["數學"]  from score_map;

查看map元素個數
select name,size(score) from score_map;
2、Struct類型構建: struct

語法: struct(val1, val2, val3, …)
說明:根據輸入的參數構建結構體struct類型,似于C語言中的結構體,內部數據通過X.X來獲取,假設我們的數據格式是這樣的,電影ABC,有1254人評價過,打分為7.4分

創建struct表
hive> create table movie_score( name string,  info struct<number:int,score:float> )row format delimited fields terminated by "\t"  collection items terminated by ":"; 

加載數據
cd /kkb/install/hivedatas/
vim struct.txt

ABC 1254:7.4  
DEF 256:4.9  
XYZ 456:5.4

加載數據
load data local inpath '/kkb/install/hivedatas/struct.txt' overwrite into table movie_score;

hive當中查詢數據
hive> select * from movie_score;  
hive> select info.number,info.score from movie_score;  
OK  
1254    7.4  
256     4.9  
456     5.4  
3、array類型構建: array

語法: array(val1, val2, …)
說明:根據輸入的參數構建數組array類型

hive> create table  person(name string,work_locations array<string>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ',';

加載數據到person表當中去
cd /kkb/install/hivedatas/
vim person.txt

數據內容格式如下
biansutao   beijing,shanghai,tianjin,hangzhou
linan   changchu,chengdu,wuhan

加載數據
hive > load  data local inpath '/kkb/install/hivedatas/person.txt' overwrite into table person;

查詢所有數據數據
hive > select * from person;

按照下表索引進行查詢
hive > select work_locations[0] from person;

查詢所有集合數據
hive  > select work_locations from person; 

查詢元素個數
hive >  select size(work_locations) from person;   

1.7、復雜型長度統計函數

1.Map類型長度函數: size(Map<k .V>)

語法: size(Map<k .V>)
返回值: int
說明: 返回map類型的長度

hive> select size(t) from map_table2;
2
2.array類型長度函數: size(Array<T>)

語法: size(Array<T>)
返回值: int
說明: 返回array類型的長度

hive> select size(t) from arr_table2;
4
3.類型轉換函數

類型轉換函數: cast
語法: cast(expr as <type>)
返回值: Expected "=" to follow "type"
說明: 返回轉換后的數據類型

hive> select cast('1' as bigint) from tableName;
1

1.8、explode函數

1、使用explode函數將hive表中的Map和Array字段數據進行拆分

lateral view用于和split、explode等UDTF一起使用的,能將一行數據拆分成多行數據,在此基礎上可以對拆分的數據進行聚合,lateral view首先為原始表的每行調用UDTF,UDTF會把一行拆分成一行或者多行,lateral view在把結果組合,產生一個支持別名表的虛擬表。
其中explode還可以用于將hive一列中復雜的array或者map結構拆分成多行

需求:現在有數據格式如下
zhangsan    child1,child2,child3,child4 k1:v1,k2:v2
lisi    child5,child6,child7,child8  k3:v3,k4:v4

字段之間使用\t分割,需求將所有的child進行拆開成為一列 
+----------+--+
| mychild  |
+----------+--+
| child1   |
| child2   |
| child3   |
| child4   |
| child5   |
| child6   |
| child7   |
| child8   |
+----------+--+

將map的key和value也進行拆開,成為如下結果

+-----------+-------------+--+
| mymapkey  | mymapvalue  |
+-----------+-------------+--+
| k1        | v1          |
| k2        | v2          |
| k3        | v3          |
| k4        | v4          |
+-----------+-------------+--+
第一步:創建hive數據庫

創建hive數據庫d

第一步:創建hive數據庫

創建hive數據庫d

hive (default)> create database hive_explode;
hive (default)> use hive_explode;
第二步:創建hive表,然后使用explode拆分map和array
create  table hive_explode.t3(name string,
children array<string>,
address Map<string,string>)
row format delimited fields terminated by '\t'  
collection items terminated by ','
map keys terminated by ':' 
stored as textFile;
第三步:加載數據

node03執行以下命令創建表數據文件

cd  /kkb/install/hivedatas/

vim maparray
數據內容格式如下

zhangsan    child1,child2,child3,child4 k1:v1,k2:v2
lisi    child5,child6,child7,child8 k3:v3,k4:v4

hive表當中加載數據

hive (hive_explode)> load data local inpath '/kkb/install/hivedatas/maparray' into table hive_explode.t3;
第四步:使用explode將hive當中數據拆開

將array當中的數據拆分開

hive (hive_explode)> SELECT explode(children) AS myChild FROM hive_explode.t3;

將map當中的數據拆分開

hive (hive_explode)> SELECT explode(address) AS (myMapKey, myMapValue) FROM hive_explode.t3;
2、使用explode拆分json字符串

需求:現在有一些數據格式如下:

a:shandong,b:beijing,c:hebei|1,2,3,4,5,6,7,8,9|[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]

其中字段與字段之間的分隔符是 |

我們要解析得到所有的monthSales對應的值為以下這一列(行轉列)

4900
2090
6987
第一步:創建hive表
hive (hive_explode)> 
create table hive_explode.explode_lateral_view (
area string, 
goods_id string,
sale_info string) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' 
STORED AS textfile;
第二步:準備數據并加載數據

準備數據如下

cd /kkb/install/hivedatas
vim explode_json

a:shandong,b:beijing,c:hebei|1,2,3,4,5,6,7,8,9|[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]

加載數據到hive表當中去

hive (hive_explode)> load data local inpath '/kkb/install/hivedatas/explode_json' overwrite into table hive_explode.explode_lateral_view;
第三步:使用explode拆分Array
hive (hive_explode)> select explode(split(goods_id,',')) as goods_id from hive_explode.explode_lateral_view;
第四步:使用explode拆解Map
hive (hive_explode)> select explode(split(area,',')) as area from hive_explode.explode_lateral_view;
第五步:拆解json字段
hive (hive_explode)> select explode(split(regexp_replace(regexp_replace(sale_info,'\\[\\{',''),'}]',''),'},\\{')) as  sale_info from hive_explode.explode_lateral_view;

然后我們想用get_json_object來獲取key為monthSales的數據:

hive (hive_explode)> select get_json_object(explode(split(regexp_replace(regexp_replace(sale_info,'\\[\\{',''),'}]',''),'},\\{')),'$.monthSales') as  sale_info from hive_explode.explode_lateral_view;
然后出現異常FAILED: SemanticException [Error 10081]: UDTF's are not supported outside the SELECT clause, nor nested in expressions
UDTF explode不能寫在別的函數內
如果你這么寫,想查兩個字段,select explode(split(area,',')) as area,good_id from explode_lateral_view;
會報錯FAILED: SemanticException 1:40 Only a single expression in the SELECT clause is supported with UDTF's. Error encountered near token 'good_id'
使用UDTF的時候,只支持一個字段,這時候就需要LATERAL VIEW出場了
3、配合LATERAL VIEW使用

配合lateral view查詢多個字段

hive (hive_explode)> select goods_id2,sale_info from explode_lateral_view LATERAL VIEW explode(split(goods_id,','))goods as goods_id2;

其中LATERAL VIEW explode(split(goods_id,','))goods相當于一個虛擬表,與原表explode_lateral_view笛卡爾積關聯。

也可以多重使用

hive (hive_explode)> select goods_id2,sale_info,area2 from explode_lateral_view  LATERAL VIEW explode(split(goods_id,','))goods as goods_id2 LATERAL VIEW explode(split(area,','))area as area2;

也是三個表笛卡爾積的結果

最終,我們可以通過下面的句子,把這個json格式的一行數據,完全轉換成二維表的方式展現

hive (hive_explode)> select get_json_object(concat('{',sale_info_1,'}'),'$.source') as source, get_json_object(concat('{',sale_info_1,'}'),'$.monthSales') as monthSales, get_json_object(concat('{',sale_info_1,'}'),'$.userCount') as monthSales,  get_json_object(concat('{',sale_info_1,'}'),'$.score') as monthSales from explode_lateral_view   LATERAL VIEW explode(split(regexp_replace(regexp_replace(sale_info,'\\[\\{',''),'}]',''),'},\\{'))sale_info as sale_info_1;

總結:

Lateral View通常和UDTF一起出現,為了解決UDTF不允許在select字段的問題。
Multiple Lateral View可以實現類似笛卡爾乘積。
Outer關鍵字可以把不輸出的UDTF的空結果,輸出成NULL,防止丟失數據。

1.9、列、行互轉函數

1.9.1、列轉行

1.相關函數說明

CONCAT(string A/col, string B/col…):返回輸入字符串連接后的結果,支持任意個輸入字符串;

CONCAT_WS(separator, str1, str2,...):它是一個特殊形式的 CONCAT()。第一個參數剩余參數間的分隔符。分隔符可以是與剩余參數一樣的字符串。如果分隔符是 NULL,返回值也將為 NULL。這個函數會跳過分隔符參數后的任何 NULL 和空字符串。分隔符將被加到被連接的字符串之間;

COLLECT_SET(col):函數只接受基本數據類型,它的主要作用是將某字段的值進行去重匯總,產生array類型字段。

2.數據準備

表6-6 數據準備

name constellation blood_type
孫悟空 白羊座 A
老王 射手座 A
宋宋 白羊座 B
豬八戒 白羊座 A
冰冰 射手座 A
3.需求

把星座和血型一樣的人歸類到一起。結果如下:

射手座,A            老王|冰冰
白羊座,A            孫悟空|豬八戒
白羊座,B            宋宋
4.創建本地constellation.txt,導入數據

node03服務器執行以下命令創建文件,注意數據使用\t進行分割

cd /kkb/install/hivedatas
vim constellation.txt
孫悟空 白羊座 A
老王  射手座 A
宋宋  白羊座 B       
豬八戒 白羊座 A
鳳姐  射手座 A
5.創建hive表并導入數據

創建hive表并加載數據

hive (hive_explode)> create table person_info(  name string,  constellation string,  blood_type string)  row format delimited fields terminated by "\t";

加載數據

hive (hive_explode)> load data local inpath '/kkb/install/hivedatas/constellation.txt' into table person_info;
6.按需求查詢數據
hive (hive_explode)> select t1.base, concat_ws('|', collect_set(t1.name)) name from    (select name, concat(constellation, "," , blood_type) base from person_info) t1 group by  t1.base;

1.9.2、行轉列

1.函數說明

EXPLODE(col):將hive一列中復雜的array或者map結構拆分成多行。

LATERAL VIEW

用法:LATERAL VIEW udtf(expression) tableAlias AS columnAlias

解釋:用于和split, explode等UDTF一起使用,它能夠將一列數據拆成多行數據,在此基礎上可以對拆分后的數據進行聚合。

2.數據準備
2.數據準備

數據內容如下,字段之間都是使用\t進行分割

cd /kkb/install/hivedatas

vim movie.txt
《疑犯追蹤》  懸疑,動作,科幻,劇情
《Lie to me》 懸疑,警匪,動作,心理,劇情
《戰狼2》   戰爭,動作,災難
3.需求

將電影分類中的數組數據展開。結果如下:

《疑犯追蹤》  懸疑
《疑犯追蹤》  動作
《疑犯追蹤》  科幻
《疑犯追蹤》  劇情
《Lie to me》 懸疑
《Lie to me》 警匪
《Lie to me》 動作
《Lie to me》 心理
《Lie to me》 劇情
《戰狼2》   戰爭
《戰狼2》   動作
《戰狼2》   災難
4.創建hive表并導入數據

創建hive表

hive (hive_explode)> create table movie_info(
movie string, 
category array<string>
) 
row format delimited fields terminated by "\t" 
collection items terminated by ",";

加載數據

load data local inpath "/kkb/install/hivedatas/movie.txt" into table movie_info;
5.按需求查詢數據
hive (hive_explode)>  
select movie, category_name 
from 
movie_info lateral view explode(category) table_tmp as category_name;

1.10、reflect函數

reflect函數可以支持在sql中調用java中的自帶函數

使用java.lang.Math當中的Max求兩列中最大值

創建hive表

創建hive表

hive (hive_explode)>  
create table test_udf(col1 int,col2 int)
row format delimited fields terminated by ',';

準備數據并加載數據

cd /kkb/install/hivedatas

vim test_udf

1,2
4,3
6,4
7,5
5,6

加載數據

hive (hive_explode)> load data local inpath '/kkb/install/hivedatas/test_udf' overwrite into table test_udf;

使用java.lang.Math當中的Max求兩列當中的最大值

hive (hive_explode)> select reflect("java.lang.Math","max",col1,col2) from test_udf;
不同記錄執行不同的java內置函數

創建hive表

hive (hive_explode)> create table test_udf2(class_name string,method_name string,col1 int , col2 int) row format delimited fields terminated by ',';

準備數據

cd /export/servers/hivedatas

vim test_udf2

java.lang.Math,min,1,2
java.lang.Math,max,2,3

加載數據

hive (hive_explode)> load data local inpath '/kkb/install/hivedatas/test_udf2' overwrite into table test_udf2;

執行查詢

hive (hive_explode)> select reflect(class_name,method_name,col1,col2) from test_udf2;
判斷是否為數字

使用apache commons中的函數,commons下的jar已經包含在hadoop的classpath中,所以可以直接使用。

使用方式如下:

hive (hive_explode)> select reflect("org.apache.commons.lang.math.NumberUtils","isNumber","123");

1.11、分析函數

1、分析函數的作用介紹

對于一些比較復雜的數據求取過程,我們可能就要用到分析函數,分析函數主要用于分組求topN,或者求取百分比,或者進行數據的切片等等,我們都可以使用分析函數來解決

2、常用的分析函數介紹

1、ROW_NUMBER():

從1開始,按照順序,生成分組內記錄的序列,比如,按照pv降序排列,生成分組內每天的pv名次,ROW_NUMBER()的應用場景非常多,再比如,獲取分組內排序第一的記錄;獲取一個session中的第一條refer等。

2、RANK() :

生成數據項在分組中的排名,排名相等會在名次中留下空位

3、DENSE_RANK() :

生成數據項在分組中的排名,排名相等會在名次中不會留下空位

4、CUME_DIST :

小于等于當前值的行數/分組內總行數。比如,統計小于等于當前薪水的人數,所占總人數的比例

5、PERCENT_RANK :

分組內當前行的RANK值/分組內總行數

6、NTILE(n) :

用于將分組數據按照順序切分成n片,返回當前切片值,如果切片不均勻,默認增加第一個切片的分布。NTILE不支持ROWS BETWEEN,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)。

3、需求描述

現有數據內容格式如下,分別對應三個字段,cookieid,createtime ,pv,求取每個cookie訪問pv前三名的數據記錄,其實就是分組求topN,求取每組當中的前三個值

cookie1,2015-04-10,1
cookie1,2015-04-11,5
cookie1,2015-04-12,7
cookie1,2015-04-13,3
cookie1,2015-04-14,2
cookie1,2015-04-15,4
cookie1,2015-04-16,4
cookie2,2015-04-10,2
cookie2,2015-04-11,3
cookie2,2015-04-12,5
cookie2,2015-04-13,6
cookie2,2015-04-14,3
cookie2,2015-04-15,9
cookie2,2015-04-16,7
第一步:創建數據庫表

在hive當中創建數據庫表

CREATE EXTERNAL TABLE cookie_pv (
cookieid string,
createtime string, 
pv INT
) ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' ;
第二步:準備數據并加載

node03執行以下命令,創建數據,并加載到hive表當中去

cd /kkb/install/hivedatas
vim cookiepv.txt

cookie1,2015-04-10,1
cookie1,2015-04-11,5
cookie1,2015-04-12,7
cookie1,2015-04-13,3
cookie1,2015-04-14,2
cookie1,2015-04-15,4
cookie1,2015-04-16,4
cookie2,2015-04-10,2
cookie2,2015-04-11,3
cookie2,2015-04-12,5
cookie2,2015-04-13,6
cookie2,2015-04-14,3
cookie2,2015-04-15,9
cookie2,2015-04-16,7

加載數據到hive表當中去

load  data  local inpath '/kkb/install/hivedatas/cookiepv.txt'  overwrite into table  cookie_pv 
第三步:使用分析函數來求取每個cookie訪問PV的前三條記錄
SELECT 
cookieid,
createtime,
pv,
RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1,
DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3 
FROM cookie_pv 
WHERE rn1 <=  3 ;

2、Hive自定義函數

2.1、自定義函數的基本介紹

1)Hive 自帶了一些函數,比如:max/min等,但是數量有限,自己可以通過自定義UDF來方便的擴展。

2)當Hive提供的內置函數無法滿足你的業務處理需要時,此時就可以考慮使用用戶自定義函數(UDF:user-defined function)。

3)根據用戶自定義函數類別分為以下三種:

? (1)UDF(User-Defined-Function)

? 一進一出

? (2)UDAF(User-Defined Aggregation Function)

? 聚集函數,多進一出

? 類似于:count/max/min

? (3)UDTF(User-Defined Table-Generating Functions)

? 一進多出

? 如lateral view explode()

4)官方文檔地址

https://cwiki.apache.org/confluence/display/Hive/HivePlugins

5)編程步驟:

? (1)繼承org.apache.hadoop.hive.ql.UDF

? (2)需要實現evaluate函數;evaluate函數支持重載;

6)注意事項

? (1)UDF必須要有返回類型,可以返回null,但是返回類型不能為void;

? (2)UDF中常用Text/LongWritable等類型,不推薦使用java類型;

2.2、自定義函數開發

1、自定義函數的基本介紹

1)Hive 自帶了一些函數,比如:max/min等,但是數量有限,自己可以通過自定義UDF來方便的擴展。

2)當Hive提供的內置函數無法滿足你的業務處理需要時,此時就可以考慮使用用戶自定義函數(UDF:user-defined function)。

3)根據用戶自定義函數類別分為以下三種:

? (1)UDF(User-Defined-Function)

? 一進一出

? (2)UDAF(User-Defined Aggregation Function)

? 聚集函數,多進一出

? 類似于:count/max/min

? (3)UDTF(User-Defined Table-Generating Functions)

? 一進多出

? 如lateral view explode()

4)官方文檔地址

https://cwiki.apache.org/confluence/display/Hive/HivePlugins

5)編程步驟:

? (1)繼承org.apache.hadoop.hive.ql.UDF

? (2)需要實現evaluate函數;evaluate函數支持重載;

6)注意事項

? (1)UDF必須要有返回類型,可以返回null,但是返回類型不能為void;

? (2)UDF中常用Text/LongWritable等類型,不推薦使用java類型;

2、自定義函數開發
第一步:創建maven java 工程,并導入jar包
<repositories>
??? <repository>
??????? <id>cloudera</id>
?<url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
??? </repository>
</repositories>
<dependencies>
??? <dependency>
??????? <groupId>org.apache.hadoop</groupId>
??????? <artifactId>hadoop-common</artifactId>
??????? <version>2.6.0-cdh6.14.2</version>
??? </dependency>
??? <dependency>
??????? <groupId>org.apache.hive</groupId>
??????? <artifactId>hive-exec</artifactId>
??????? <version>1.1.0-cdh6.14.2</version>
??? </dependency>
</dependencies>
<build>
<plugins>
??? <plugin>
??????? <groupId>org.apache.maven.plugins</groupId>
??????? <artifactId>maven-compiler-plugin</artifactId>
??????? <version>3.0</version>
??????? <configuration>
??????????? <source>1.8</source>
??????????? <target>1.8</target>
??????????? <encoding>UTF-8</encoding>
??????? </configuration>
??? </plugin>
???? <plugin>
???????? <groupId>org.apache.maven.plugins</groupId>
???????? <artifactId>maven-shade-plugin</artifactId>
???????? <version>2.2</version>
???????? <executions>
???????????? <execution>
???????????????? <phase>package</phase>
???????????????? <goals>
???????????????????? <goal>shade</goal>
???????????????? </goals>
???????????????? <configuration>
???????????????????? <filters>
???????????????????????? <filter>
???????????????????????????? <artifact>*:*</artifact>
???????????????????????????? <excludes>
???????????????????????????????? <exclude>META-INF/*.SF</exclude>
???????????????????????????????? <exclude>META-INF/*.DSA</exclude>
???????????????????????????????? <exclude>META-INF/*/RSA</exclude>
???????????????????????????? </excludes>
???????????????????????? </filter>
????????????? ???????</filters>
???????????????? </configuration>
???????????? </execution>
???????? </executions>
???? </plugin>
</plugins>
</build>
第二步:開發java類繼承UDF,并重載evaluate 方法
public class MyUDF extends UDF {
     public Text evaluate(final Text s) {
         if (null == s) {
             return null;
         }
         //**返回大寫字母         
         return new Text(s.toString().toUpperCase());
     }
 }
第三步:將我們的項目打包,并上傳到hive的lib目錄下

使用maven的package進行打包,將我們打包好的jar包上傳到node03服務器的/kkb/install/hive-1.1.0-cdh6.14.2/lib 這個路徑下

第四步:添加我們的jar包

重命名我們的jar包名稱

cd /kkb/install/hive-1.1.0-cdh6.14.2/lib
mv original-day_hive_udf-1.0-SNAPSHOT.jar udf.jar

hive的客戶端添加我們的jar包

0: jdbc:hive2://node03:10000> add jar /kkb/install/hive-1.1.0-cdh6.14.2/lib/udf.jar;
第五步:設置函數與我們的自定義函數關聯
0: jdbc:hive2://node03:10000> create temporary function tolowercase as 'com.kkb.udf.MyUDF';
第六步:使用自定義函數
0: jdbc:hive2://node03:10000>select tolowercase('abc');

hive當中如何創建永久函數

在hive當中添加臨時函數,需要我們每次進入hive客戶端的時候都需要添加以下,退出hive客戶端臨時函數就會失效,那么我們也可以創建永久函數來讓其不會失效

創建永久函數

1、指定數據庫,將我們的函數創建到指定的數據庫下面
0: jdbc:hive2://node03:10000>use myhive;

2、使用add jar添加我們的jar包到hive當中來
0: jdbc:hive2://node03:10000>add jar /kkb/install/hive-1.1.0-cdh6.14.2/lib/udf.jar;

3、查看我們添加的所有的jar包
0: jdbc:hive2://node03:10000>list  jars;

4、創建永久函數,與我們的函數進行關聯
0: jdbc:hive2://node03:10000>create  function myuppercase as 'com.kkb.udf.MyUDF';

5、查看我們的永久函數
0: jdbc:hive2://node03:10000>show functions like 'my*';

6、使用永久函數
0: jdbc:hive2://node03:10000>select myhive.myuppercase('helloworld');

7、刪除永久函數
0: jdbc:hive2://node03:10000>drop function myhive.myuppercase;

8、查看函數
 show functions like 'my*';
向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

民和| 普定县| 元江| 蚌埠市| 徐闻县| 株洲县| 新源县| 庆城县| 得荣县| 华容县| 长岛县| 宝清县| 兰州市| 丹凤县| 分宜县| 关岭| 宁阳县| 青海省| 屏山县| 偏关县| 正阳县| 新丰县| 绥芬河市| 中山市| 潼南县| 汉源县| 兴海县| 西藏| 布尔津县| 星座| 玛纳斯县| 石林| 石屏县| 青龙| 紫金县| 湖南省| 牙克石市| 女性| 宁晋县| 崇左市| 黄大仙区|