您好,登錄后才能下訂單哦!
數據清洗的方法有哪些,很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細講解,有這方面需求的人可以來學習下,希望你能有所收獲。
數據清洗的方法包括:1、分箱法,就是將需要處理的數據根據一定的規則放進箱子里,然后進行測試;2、回歸法,就是利用函數的數據進行繪制圖像,然后對圖像進行光滑處理;3、聚類法,就是將抽象的對象進行集合分組,成為不同的集合,找到在集合意外的孤點。
數據清洗的方法包括什么?
清洗數據有三個方法,分別是分箱法、聚類法、回歸法。
1、分箱法
是一個經常使用到方法,所謂的分箱法,就是將需要處理的數據根據一定的規則放進箱子里,然后進行測試每一個箱子里的數據,并根據數據中的各個箱子的實際情況進行采取方法處理數據。
2、回歸法
回歸法就是利用了函數的數據進行繪制圖像,然后對圖像進行光滑處理。回歸法有兩種,一種是單線性回歸,一種是多線性回歸。單線性回歸就是找出兩個屬性的最佳直線,能夠從一個屬性預測另一個屬性。多線性回歸就是找到很多個屬性,從而將數據擬合到一個多維面,這樣就能夠消除噪聲。
3、聚類法
聚類法的工作流程是比較簡單的,但是操作起來確實復雜的,所謂聚類法就是將抽象的對象進行集合分組,成為不同的集合,找到在集合意外的孤點,這些孤點就是噪聲。這樣就能夠直接發現噪點,然后進行清除即可。
擴展資料:
數據清洗從名字上也看的出就是把“臟”的“洗掉”,指發現并糾正數據文件中可識別的錯誤的最后一道程序,包括檢查數據一致性,處理無效值和缺失值等。
因為數據倉庫中的數據是面向某一主題的數據的集合,這些數據從多個業務系統中抽取而來而且包含歷史數據,這樣就避免不了有的數據是錯誤數據、有的數據相互之間有沖突,這些錯誤的或有沖突的數據顯然是我們不想要的,稱為“臟數據”。
我們要按照一定的規則把“臟數據”“洗掉”,這就是數據清洗。而數據清洗的任務是過濾那些不符合要求的數據,將過濾的結果交給業務主管部門,確認是否過濾掉還是由業務單位修正之后再進行抽取。
不符合要求的數據主要是有不完整的數據、錯誤的數據、重復的數據三大類。數據清洗是與問卷審核不同,錄入后的數據清理一般是由計算機而不是人工完成 。
看完上述內容是否對您有幫助呢?如果還想對相關知識有進一步的了解或閱讀更多相關文章,請關注億速云行業資訊頻道,感謝您對億速云的支持。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。