您好,登錄后才能下訂單哦!
這篇文章主要介紹“python OpenCV怎么實現答題卡識別判卷”,在日常操作中,相信很多人在python OpenCV怎么實現答題卡識別判卷問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”python OpenCV怎么實現答題卡識別判卷”的疑惑有所幫助!接下來,請跟著小編一起來學習吧!
本文實例為大家分享了python OpenCV實現答題卡識別判卷的具體代碼,供大家參考,具體內容如下
完整代碼:
#導入工具包 import numpy as np import argparse import imutils import cv2 # 設置參數 ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", default="./images/test_03.png", help="path to the input image") args = vars(ap.parse_args()) # 正確答案 ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1} def order_points(pts): # 一共4個坐標點 rect = np.zeros((4, 2), dtype = "float32") # 按順序找到對應坐標0123分別是 左上,右上,右下,左下 # 計算左上,右下 s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # 計算右上和左下 diff = np.diff(pts, axis = 1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def four_point_transform(image, pts): # 獲取輸入坐標點 rect = order_points(pts) (tl, tr, br, bl) = rect # 計算輸入的w和h值 widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # 變換后對應坐標位置 dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype = "float32") # 計算變換矩陣 M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) # 返回變換后結果 return warped def sort_contours(cnts, method="left-to-right"): reverse = False i = 0 if method == "right-to-left" or method == "bottom-to-top": reverse = True if method == "top-to-bottom" or method == "bottom-to-top": i = 1 boundingBoxes = [cv2.boundingRect(c) for c in cnts] (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes), key=lambda b: b[1][i], reverse=reverse)) return cnts, boundingBoxes def cv_show(name,img): cv2.imshow(name, img) cv2.waitKey(0) cv2.destroyAllWindows() # 預處理 image = cv2.imread(args["image"]) contours_img = image.copy() gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 0) cv_show('blurred',blurred) edged = cv2.Canny(blurred, 75, 200) cv_show('edged',edged) # 輪廓檢測 cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] cv2.drawContours(contours_img,cnts,-1,(0,0,255),3) cv_show('contours_img',contours_img) docCnt = None # 確保檢測到了 if len(cnts) > 0: # 根據輪廓大小進行排序 cnts = sorted(cnts, key=cv2.contourArea, reverse=True) # 遍歷每一個輪廓 for c in cnts: # 近似 peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.02 * peri, True) # 準備做透視變換 if len(approx) == 4: docCnt = approx break # 執行透視變換 warped = four_point_transform(gray, docCnt.reshape(4, 2)) cv_show('warped',warped) # Otsu's 閾值處理 thresh = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] cv_show('thresh',thresh) thresh_Contours = thresh.copy() # 找到每一個圓圈輪廓 cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] cv2.drawContours(thresh_Contours,cnts,-1,(0,0,255),3) cv_show('thresh_Contours',thresh_Contours) questionCnts = [] # 遍歷 for c in cnts: # 計算比例和大小 (x, y, w, h) = cv2.boundingRect(c) ar = w / float(h) # 根據實際情況指定標準 if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1: questionCnts.append(c) # 按照從上到下進行排序 questionCnts = sort_contours(questionCnts, method="top-to-bottom")[0] correct = 0 # 每排有5個選項 for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)): # 排序 cnts = sort_contours(questionCnts[i:i + 5])[0] bubbled = None # 遍歷每一個結果 for (j, c) in enumerate(cnts): # 使用mask來判斷結果 mask = np.zeros(thresh.shape, dtype="uint8") cv2.drawContours(mask, [c], -1, 255, -1) #-1表示填充 cv_show('mask',mask) # 通過計算非零點數量來算是否選擇這個答案 mask = cv2.bitwise_and(thresh, thresh, mask=mask) total = cv2.countNonZero(mask) # 通過閾值判斷 if bubbled is None or total > bubbled[0]: bubbled = (total, j) # 對比正確答案 color = (0, 0, 255) k = ANSWER_KEY[q] # 判斷正確 if k == bubbled[1]: color = (0, 255, 0) correct += 1 # 繪圖 cv2.drawContours(warped, [cnts[k]], -1, color, 3) score = (correct / 5.0) * 100 print("[INFO] score: {:.2f}%".format(score)) cv2.putText(warped, "{:.2f}%".format(score), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2) cv2.imshow("Original", image) cv2.imshow("Exam", warped) cv2.waitKey(0)
test_03.png
運行效果:
到此,關于“python OpenCV怎么實現答題卡識別判卷”的學習就結束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學習,快去試試吧!若想繼續學習更多相關知識,請繼續關注億速云網站,小編會繼續努力為大家帶來更多實用的文章!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。