您好,登錄后才能下訂單哦!
這篇文章主要介紹“Numpy怎么使用比較有效率”,在日常操作中,相信很多人在Numpy怎么使用比較有效率問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”Numpy怎么使用比較有效率”的疑惑有所幫助!接下來,請跟著小編一起來學習吧!
Numpy 允許我們根據給定的新形狀重塑矩陣,新形狀應該和原形狀兼容。有意思的是,我們可以將新形狀中的一個參數賦值為-1。這僅僅表明它是一個未知的維度,我們希望 Numpy 來算出這個未知的維度應該是多少:Numpy 將通過查看數組的長度和剩余維度來確保它滿足上述標準。讓我們來看以下例子:
維度為-1 的不同 reshape 操作圖示。
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a.shape (2, 4)
假設我們給定行參數為 1,列參數為-1,那么 Numpy 將計算出 reshape 后的列數為 8。
a.reshape(1,-1) array([[1, 2, 3, 4, 5, 6, 7, 8]])
假設我們給定行參數為-1,列參數為 1,那么 Numpy 將計算出 reshape 后的行數為 8。
a.reshape(-1,1) array([[1], [2], [3], [4], [5], [6], [7], [8]])
下面的代碼也是一樣的道理。
a.reshape(-1,4) array([[1, 2, 3, 4], [5, 6, 7, 8]])a.reshape(-1,2) array([[1, 2], [3, 4], [5, 6], [7, 8]])a.reshape(2,-1) array([[1, 2, 3, 4], [5, 6, 7, 8]])a.reshape(4,-1) array([[1, 2], [3, 4], [5, 6], [7, 8]])
這也適用于任何更高維度張量的 reshape,但是只有一個維度的參數能賦值為-1。
a.reshape(2,2,-1) array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])a.reshape(2,-1,1) array([[[1], [2], [3], [4]], [[5], [6], [7], [8]]])
如果我們嘗試 reshape 不兼容的形狀或者是給定的未知維度參數多于 1 個,那么將會報錯。
a.reshape(-1,-1) ValueError: can only specify one unknown dimensiona.reshape(3,-1) ValueError: cannot reshape array of size 8 into shape (3,newaxis)
總而言之,當試圖對一個張量進行 reshape 操作時,新的形狀必須包含與舊的形狀相同數量的元素,這意味著兩個形狀的維度乘積必須相等。當使用 -1 參數時,與-1 相對應的維數將是原始數組的維數除以新形狀中已給出維數的乘積,以便維持相同數量的元素。
Numpy 的 argpartion 函數可以高效地找到 N 個最大值的索引并返回 N 個值。在給出索引后,我們可以根據需要進行值排序。
array = np.array([10, 7, 4, 3, 2, 2, 5, 9, 0, 4, 6, 0])index = np.argpartition*(array, -5)[-5:] index array([ 6, 1, 10, 7, 0], dtype=int64)np.sort(array[index]) array([ 5, 6, 7, 9, 10])
在很多數據處理和算法中(比如強化學習中的 PPO),我們需要使得所有的值保持在一個上下限區間內。Numpy 內置的 Clip 函數可以解決這個問題。Numpy clip () 函數用于對數組中的值進行限制。給定一個區間范圍,區間范圍外的值將被截斷到區間的邊界上。例如,如果指定的區間是 [-1,1],小于-1 的值將變為-1,而大于 1 的值將變為 1。
Clip 示例:限制數組中的最小值為 2,最大值為 6。
#Example-1 array = np.array([10, 7, 4, 3, 2, 2, 5, 9, 0, 4, 6, 0]) print (np.clip(array,2,6))[6 6 4 3 2 2 5 6 2 4 6 2]#Example-2 array = np.array([10, -1, 4, -3, 2, 2, 5, 9, 0, 4, 6, 0]) print (np.clip(array,2,5))[5 2 4 2 2 2 5 5 2 4 5 2]
我們可以使用 Numpy extract () 函數從數組中提取符合條件的特定元素。
arr = np.arange(10) arrarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])# Define the codition, here we take MOD 3 if zero condition = np.mod(arr, 3)==0 conditionarray([ True, False, False, True, False, False, True, False, False,True])np.extract(condition, arr) array([0, 3, 6, 9])
同樣地,如果有需要,我們可以用 AND 和 OR 組合的直接條件,如下所示:
np.extract(((arr > 2) & (arr < 8)), arr)array([3, 4, 5, 6, 7])
返回數組中不在另一個數組中的獨有元素。這等價于兩個數組元素集合的差集。
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) b = np.array([3,4,7,6,7,8,11,12,14]) c = np.setdiff1d(a,b) carray([1, 2, 5, 9])
以上 5 個 Numpy 函數并不經常被社區使用,但是它們非常簡潔和優雅。在我看來,我們應該盡可能在出現類似情況時使用這些函數,不僅因為代碼量更少,更因為它們是解決復雜問題的絕妙方法。
到此,關于“Numpy怎么使用比較有效率”的學習就結束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學習,快去試試吧!若想繼續學習更多相關知識,請繼續關注億速云網站,小編會繼續努力為大家帶來更多實用的文章!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。