您好,登錄后才能下訂單哦!
小編給大家分享一下leetcode中如何實現統計小于非負數n的素數個數,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!
leetcode 204.
題目要求:
統計小于非負數n的素數個數。
輸入輸出示例:
Input: 100
Output: 25
解題思路:
題目比較簡單,素數問題也算是各種問題中常見的問題了。首先要明白的一點是,什么是素數?素數又稱為質數,指的是在大于1的自然數中,除了1和它本身外不再有因數的數。
最簡單的思路是,嘗試用n去除2到n-1,發現有整除,可以確認這不是素數。但是這樣很費勁有沒有?要統計個數,就要把所有的數都算一遍。
再考慮一下,n的因數不可能大于sqrt(n),那么遍歷從n到sqrt(n)就夠了。但是這樣還是很慢,如果n不大還行,如果n很大,運力的消耗將很嚴重。
再對素數進行分析,從2到n這中間,仍然會存在很多不靠譜的數字,比如4,6,8等等,他們必然能被2整除,也就是說,凡是2-sqrt(n)的整數倍的數字,那肯定不是素數了。首先把偶數排掉,就去掉了一半的數字,以此類推。
所以,建立一個bool類型的數組,用來標記是素數或者不是素數,長度為n+1.并對它進行初始化,0,1設為false,2,3設為true,從4開始,所有偶數設為false,其他設為true。
然后設置一個i從2到sqrt(n)的循環,仍然跳過偶數。接著內層循環對i的倍數進行標記false,當把sqrt(n)也標記完的時候,整個array就完成了,最后統計一遍true的次數,就可以得到結果了。
不過測試之后發現有個bug,當n很大的時候長度會超出限制,但是我現在想不出更好的方法了,誰能解答一下?歡迎討論。
Java代碼的實現:
public class Solution {
public int countPrimes(int n) {
boolean prime[] = new boolean[n+1];
//initial array 排掉偶數,注意開頭幾個單元的標注
for(int i = 0; i < n+1; i++)
{
if(i == 0 || i == 1)
prime[i] = false;
else if(i < 4)
prime[i] = true;
else if(i % 2 == 0)
prime[i] = false;
else
prime[i] = true;
}
//標記其他單元
for(int i = 3; i < (int)Math.sqrt(n); i += 2)
for(int j = i + i; j < n + 1; j += i)
{
if(prime[j])
{
prime[j] = false;
}
}
int result = 0;
//統計輸出結果
for(int i = 1; i < n+1; i++)
{
if(prime[i])
result++;
}
return result;
}
}
以上是“leetcode中如何實現統計小于非負數n的素數個數”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。