91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

C++基于灰度圖上色GrayToColorFromOther怎么實現

發布時間:2022-03-28 13:56:30 來源:億速云 閱讀:187 作者:iii 欄目:大數據

這篇文章主要介紹“C++基于灰度圖上色GrayToColorFromOther怎么實現”的相關知識,小編通過實際案例向大家展示操作過程,操作方法簡單快捷,實用性強,希望這篇“C++基于灰度圖上色GrayToColorFromOther怎么實現”文章能幫助大家解決問題。

場景需求

       之前有提到給灰度圖上色的需求,在此基礎上,還有一種需求,就是基于另一張參考灰度圖的色板來給當前的灰度圖上色,比如參考灰度圖的數值區間為-10到10,顏色從藍到綠再到紅,而當前的灰度圖的數據區間為-1到1,若基于參考灰度圖的色板確定數據對應的顏色,則當前灰度圖的顏色應該在綠色左右波動。

       下方為具體實現函數和測試代碼。

功能函數代碼

/**
 * @brief GrayToColorFromOther             灰度圖上色,基于參考灰度圖的色板
 * @param phase1                           輸入的灰色圖像,通道為1,提供色板
 * @param phase2                           輸入的灰色圖像,通道為1,基于phase1的色板繪色
 * @return                                 上色后的圖像
 */
cv::Mat GrayToColorFromOther(cv::Mat &phase1, cv::Mat &phase2)
{
	CV_Assert(phase1.channels() == 1);
	CV_Assert(phase2.channels() == 1);
	if (phase1.empty() || phase2.empty())
	{
		cv::Mat result = cv::Mat::zeros(100, 100, CV_8UC3);
		return result;
	}
	cv::Mat temp, result, mask;
	double max1, min1;
	int row = phase2.rows;
	int col = phase2.cols;
	// 確定參考灰度圖的數據范圍
	cv::minMaxIdx(phase1, &min1, &max1, nullptr, nullptr, phase1 == phase1);
	// 將當前灰度圖以參考灰度圖的數據范圍作標準,進行數據變換
	temp = phase2.clone();
	for (int i = 0; i < row; ++i)
	{
		float *t2 = temp.ptr<float>(i);
		for (int j = 0; j < col; ++j)
		{
			t2[j] = 255.0f*(phase2.at<float>(i, j) - min1) / (max1 - min1);
		}
	}
	temp.convertTo(temp, CV_8UC1);
	// 創建掩膜,目的是為了隔離nan值的干擾
	mask = cv::Mat::zeros(phase2.size(), CV_8UC1);
	mask.setTo(255, phase2 == phase2);
 
	// 初始化三通道顏色圖
	cv::Mat color1, color2, color3;
	color1 = cv::Mat::zeros(temp.size(), temp.type());
	color2 = cv::Mat::zeros(temp.size(), temp.type());
	color3 = cv::Mat::zeros(temp.size(), temp.type());
 
	// 基于灰度圖的灰度層級,給其上色,最底的灰度值0為藍色(255,0,0),最高的灰度值255為紅色(0,0,255),中間的灰度值127為綠色(0,255,0)
	for (int i = 0; i < row; ++i)
	{
		uchar *c1 = color1.ptr<uchar>(i);
		uchar *c2 = color2.ptr<uchar>(i);
		uchar *c3 = color3.ptr<uchar>(i);
		uchar *r = temp.ptr<uchar>(i);
		uchar *m = mask.ptr<uchar>(i);
		for (int j = 0; j < col; ++j)
		{
			if (m[j] == 255)
			{
				if (r[j] > (3 * 255 / 4) && r[j] <= 255)
				{
					c1[j] = 255;
					c2[j] = 4 * (255 - r[j]);
					c3[j] = 0;
				}
				else if (r[j] <= (3 * 255 / 4) && r[j] > (255 / 2))
				{
					c1[j] = 255 - 4 * (3 * 255 / 4 - r[j]);
					c2[j] = 255;
					c3[j] = 0;
				}
				else if (r[j] <= (255 / 2) && r[j] > (255 / 4))
				{
					c1[j] = 0;
					c2[j] = 255;
					c3[j] = 4 * (255 / 2 - r[j]);
				}
				else if (r[j] <= (255 / 4) && r[j] >= 0)
				{
					c1[j] = 0;
					c2[j] = 255 - 4 * (255 / 4 - r[j]);
					c3[j] = 255;
				}
				else {
					c1[j] = 0;
					c2[j] = 0;
					c3[j] = 0;
				}
			}
		}
	}
 
	// 三通道合并,得到顏色圖
	vector<cv::Mat> images;
	images.push_back(color3);
	images.push_back(color2);
	images.push_back(color1);
	cv::merge(images, result);
 
	return result;
}

C++測試代碼

#include<iostream>
#include<opencv2/opencv.hpp>
#include<ctime>
using namespace std;
using namespace cv;
 
void UnitPolar(int squaresize, cv::Mat& mag,cv::Mat& ang);
void UnitCart(int squaresize, cv::Mat& x, cv::Mat& y);
cv::Mat GrayToColor(cv::Mat &phase);
cv::Mat GrayToColorFromOther(cv::Mat &phase1, cv::Mat &phase2);
 
int main(void)
{
	cv::Mat mag, ang,result,result2;
	UnitPolar(2001, mag, ang);
	mag.at<float>(10, 10) = nan("");
	cv::Mat mag2 = mag / 2;
 
	result = GrayToColor(mag);
	result2= GrayToColorFromOther(mag,mag2);
 
	system("pause");
	return 0;
}
 
void UnitPolar(int squaresize, cv::Mat& mag,cv::Mat& ang) {
	cv::Mat x;
	cv::Mat y;
	UnitCart(squaresize, x, y);                //產生指定范圍內的指定數量點數,相鄰數據跨度相同
	// OpenCV自帶的轉換有精度限制,導致結果有一定差異性
	//cv::cartToPolar(x, y, mag, ang, false); //坐標轉換
 
	mag = cv::Mat(x.size(), x.type());
	ang = cv::Mat(x.size(), x.type());
	int row = mag.rows;
	int col = mag.cols;
	float *m, *a, *xx, *yy;
	for (int i = 0; i < row; ++i)
	{
		m = mag.ptr<float>(i);
		a = ang.ptr<float>(i);
		xx = x.ptr<float>(i);
		yy = y.ptr<float>(i);
		for (int j = 0; j < col; ++j)
		{
			m[j] = sqrt(xx[j] * xx[j] + yy[j] * yy[j]);
			a[j] = atan2(yy[j], xx[j]);
		}
	}
}
 
void UnitCart(int squaresize, cv::Mat& x, cv::Mat& y) {
	CV_Assert(squaresize % 2 == 1);
	x.create(squaresize, squaresize, CV_32FC1);
	y.create(squaresize, squaresize, CV_32FC1);
	//設置邊界
	x.col(0).setTo(-1.0);
	x.col(squaresize - 1).setTo(1.0f);
	y.row(0).setTo(1.0);
	y.row(squaresize - 1).setTo(-1.0f);
 
	float delta = 2.0f / (squaresize - 1.0f);  //兩個元素的間隔
 
	//計算其他位置的值
	for (int i = 1; i < squaresize - 1; ++i) {
		x.col(i) = -1.0f + i * delta;
		y.row(i) = 1.0f - i * delta;
	}
}
 
/**
 * @brief GrayToColor                      灰度圖上色
 * @param phase                            輸入的灰色圖像,通道為1
 * @return                                 上色后的圖像
 */
cv::Mat GrayToColor(cv::Mat &phase)
{
	CV_Assert(phase.channels() == 1);
 
	cv::Mat temp, result, mask;
	// 將灰度圖重新歸一化至0-255
	cv::normalize(phase, temp, 255, 0, cv::NORM_MINMAX);
	temp.convertTo(temp, CV_8UC1);
	// 創建掩膜,目的是為了隔離nan值的干擾
	mask = cv::Mat::zeros(phase.size(), CV_8UC1);
	mask.setTo(255, phase == phase);
 
	// 初始化三通道顏色圖
	cv::Mat color1, color2, color3;
	color1 = cv::Mat::zeros(temp.size(), temp.type());
	color2 = cv::Mat::zeros(temp.size(), temp.type());
	color3 = cv::Mat::zeros(temp.size(), temp.type());
	int row = phase.rows;
	int col = phase.cols;
 
	// 基于灰度圖的灰度層級,給其上色,最底的灰度值0為藍色(255,0,0),最高的灰度值255為紅色(0,0,255),中間的灰度值127為綠色(0,255,0)
	// 不要驚訝藍色為什么是(255,0,0),因為OpenCV中是BGR而不是RGB
	for (int i = 0; i < row; ++i)
	{
		uchar *c1 = color1.ptr<uchar>(i);
		uchar *c2 = color2.ptr<uchar>(i);
		uchar *c3 = color3.ptr<uchar>(i);
		uchar *r = temp.ptr<uchar>(i);
		uchar *m = mask.ptr<uchar>(i);
		for (int j = 0; j < col; ++j)
		{
			if (m[j] == 255)
			{
				if (r[j] > (3 * 255 / 4) && r[j] <= 255)
				{
					c1[j] = 255;
					c2[j] = 4 * (255 - r[j]);
					c3[j] = 0;
				}
				else if (r[j] <= (3 * 255 / 4) && r[j] > (255 / 2))
				{
					c1[j] = 255 - 4 * (3 * 255 / 4 - r[j]);
					c2[j] = 255;
					c3[j] = 0;
				}
				else if (r[j] <= (255 / 2) && r[j] > (255 / 4))
				{
					c1[j] = 0;
					c2[j] = 255;
					c3[j] = 4 * (255 / 2 - r[j]);
				}
				else if (r[j] <= (255 / 4) && r[j] >= 0)
				{
					c1[j] = 0;
					c2[j] = 255 - 4 * (255 / 4 - r[j]);
					c3[j] = 255;
				}
				else {
					c1[j] = 0;
					c2[j] = 0;
					c3[j] = 0;
				}
			}
		}
	}
 
	// 三通道合并,得到顏色圖
	vector<cv::Mat> images;
	images.push_back(color3);
	images.push_back(color2);
	images.push_back(color1);
	cv::merge(images, result);
 
	return result;
}
 
/**
 * @brief GrayToColorFromOther             灰度圖上色,基于參考灰度圖的色板
 * @param phase1                           輸入的灰色圖像,通道為1,提供色板
 * @param phase2                           輸入的灰色圖像,通道為1,基于phase1的色板繪色
 * @return                                 上色后的圖像
 */
cv::Mat GrayToColorFromOther(cv::Mat &phase1, cv::Mat &phase2)
{
	CV_Assert(phase1.channels() == 1);
	CV_Assert(phase2.channels() == 1);
	if (phase1.empty() || phase2.empty())
	{
		cv::Mat result = cv::Mat::zeros(100, 100, CV_8UC3);
		return result;
	}
	cv::Mat temp, result, mask;
	double max1, min1;
	int row = phase2.rows;
	int col = phase2.cols;
	// 確定參考灰度圖的數據范圍
	cv::minMaxIdx(phase1, &min1, &max1, nullptr, nullptr, phase1 == phase1);
	// 將當前灰度圖以參考灰度圖的數據范圍作標準,進行數據變換
	temp = phase2.clone();
	for (int i = 0; i < row; ++i)
	{
		float *t2 = temp.ptr<float>(i);
		for (int j = 0; j < col; ++j)
		{
			t2[j] = 255.0f*(phase2.at<float>(i, j) - min1) / (max1 - min1);
		}
	}
	temp.convertTo(temp, CV_8UC1);
	// 創建掩膜,目的是為了隔離nan值的干擾
	mask = cv::Mat::zeros(phase2.size(), CV_8UC1);
	mask.setTo(255, phase2 == phase2);
 
	// 初始化三通道顏色圖
	cv::Mat color1, color2, color3;
	color1 = cv::Mat::zeros(temp.size(), temp.type());
	color2 = cv::Mat::zeros(temp.size(), temp.type());
	color3 = cv::Mat::zeros(temp.size(), temp.type());
 
	// 基于灰度圖的灰度層級,給其上色,最底的灰度值0為藍色(255,0,0),最高的灰度值255為紅色(0,0,255),中間的灰度值127為綠色(0,255,0)
	for (int i = 0; i < row; ++i)
	{
		uchar *c1 = color1.ptr<uchar>(i);
		uchar *c2 = color2.ptr<uchar>(i);
		uchar *c3 = color3.ptr<uchar>(i);
		uchar *r = temp.ptr<uchar>(i);
		uchar *m = mask.ptr<uchar>(i);
		for (int j = 0; j < col; ++j)
		{
			if (m[j] == 255)
			{
				if (r[j] > (3 * 255 / 4) && r[j] <= 255)
				{
					c1[j] = 255;
					c2[j] = 4 * (255 - r[j]);
					c3[j] = 0;
				}
				else if (r[j] <= (3 * 255 / 4) && r[j] > (255 / 2))
				{
					c1[j] = 255 - 4 * (3 * 255 / 4 - r[j]);
					c2[j] = 255;
					c3[j] = 0;
				}
				else if (r[j] <= (255 / 2) && r[j] > (255 / 4))
				{
					c1[j] = 0;
					c2[j] = 255;
					c3[j] = 4 * (255 / 2 - r[j]);
				}
				else if (r[j] <= (255 / 4) && r[j] >= 0)
				{
					c1[j] = 0;
					c2[j] = 255 - 4 * (255 / 4 - r[j]);
					c3[j] = 255;
				}
				else {
					c1[j] = 0;
					c2[j] = 0;
					c3[j] = 0;
				}
			}
		}
	}
 
	// 三通道合并,得到顏色圖
	vector<cv::Mat> images;
	images.push_back(color3);
	images.push_back(color2);
	images.push_back(color1);
	cv::merge(images, result);
 
	return result;
}

測試效果

C++基于灰度圖上色GrayToColorFromOther怎么實現 

圖1 參考灰度圖上色效果

C++基于灰度圖上色GrayToColorFromOther怎么實現 

圖2 基于參考灰度圖色板的上色效果

關于“C++基于灰度圖上色GrayToColorFromOther怎么實現”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業相關的知識,可以關注億速云行業資訊頻道,小編每天都會為大家更新不同的知識點。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

c++
AI

天柱县| 铅山县| 龙南县| 宁化县| 从化市| 奈曼旗| 芦山县| 老河口市| 福州市| 收藏| 瑞昌市| 华池县| 铁力市| 开远市| 鄂托克前旗| 咸丰县| 健康| 临沧市| 延庆县| 阿尔山市| 庄河市| 北安市| 新乡县| 年辖:市辖区| 文水县| 榆树市| 马公市| 城口县| 东平县| 达拉特旗| 兰坪| 巴中市| 平湖市| 昔阳县| 儋州市| 建昌县| 文山县| 柳林县| 忻城县| 尖扎县| 伊春市|