您好,登錄后才能下訂單哦!
原因:用戶代理未生效。檢查core-site.xml文件是否正確配置。
<property>
<name>hadoop.proxyuser.bigdata.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.bigdata.groups</name>
<value>*</value>
</property>
備注hadoop.proxyuser.XXX.hosts 與 hadoop.proxyuser.XXX.groups 中XXX為異常信息中User:* 中的用戶名部分
<property>
<name>hadoop.proxyuser.bigdata.hosts</name>
<value>*</value>
<description>The superuser can connect only from host1 and host2 to impersonate a user</description>
</property>
<property>
<name>hadoop.proxyuser.bigdata.groups</name>
<value>*</value>
<description>Allow the superuser oozie to impersonate any members of the group group1 and group2</description>
</property>
增加以上配置后,無需重啟集群,可以直接在namenode節點上使用管理員賬號重新加載這兩個屬性值,命令為:
$ hdfs dfsadmin -refreshSuperUserGroupsConfiguration
Refresh super user groups configuration successful
$ yarn rmadmin -refreshSuperUserGroupsConfiguration
19/01/16 15:02:29 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8033
如果集群配置了HA,執行如下命令namenode節點全部重新加載:
# hadoop dfsadmin -fs hdfs://ns -refreshSuperUserGroupsConfiguration
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.
Refresh super user groups configuration successful for master/192.168.99.219:9000
Refresh super user groups configuration successful for node01/192.168.99.173:9000
現象:使用beeline、jdbc、python調用hiveserver2時,無法查詢、建表等Hbase關聯表,
<property>
<name>hive.server2.enable.doAs</name>
<value>false</value>
<description>
Setting this property to true will have HiveServer2 execute
Hive operations as the user making the calls to it.
</description>
</property>
在hive創建Hbase關聯表
# Hive中的表名test_tb
CREATE TABLE test_tb(key int, value string)
# 指定存儲處理器
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
# 聲明列族,列名
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val")
# hbase.table.name聲明HBase表名,為可選屬性默認與Hive的表名相同
# hbase.mapred.output.outputtable指定插入數據時寫入的表,如果以后需要往該表插入數據就需要指定該值
TBLPROPERTIES ("hbase.table.name" = "test_tb", "hbase.mapred.output.outputtable" = "test_tb");
使用spark standalone模式執行任務,沒提交一次任務,在每個節點work目錄下都會生成一個文件夾,命名規則app-xxxxxxx-xxxx。該文件夾下是任務提交時,各節點從主節點下載的程序所需要的資源文件。 這些目錄每次執行都會生成,且不會自動清理,執行任務過多會將內存撐爆。
export SPARK_WORKER_OPTS="
-Dspark.worker.cleanup.enabled=true # 是否開啟自動清理
-Dspark.worker.cleanup.interval=1800 # 清理周期,每隔多長時間清理一次,單位秒
-Dspark.worker.cleanup.appDataTtl=3600" # 保留最近多長時間的數據
2019-01-25 03:26:41,627 [myid:] - WARN [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@211] - Too many connections from /172.17.0.1 - max is 60
hbase-site.xml
hbase.zookeeper.property.maxClientCnxns
hive.server2.thrift.min.worker.threads
hive.server2.thrift.max.worker.threads
hive.zookeeper.session.timeout
# Limits the number of concurrent connections (at the socket level) that a single client, identified by IP address
maxClientCnxns=200
# The minimum session timeout in milliseconds that the server will allow the client to negotiate
minSessionTimeout=1000
# The maximum session timeout in milliseconds that the server will allow the client to negotiate
maxSessionTimeout=60000
持續更新....
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。