91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

做大數據工程師需要掌握哪些技能呢?

發布時間:2020-06-28 21:46:54 來源:網絡 閱讀:331 作者:a大數據 欄目:大數據

大數據是眼下非常時髦的技術名詞,與此同時自然也催生出了一些與大數據處理相關的職業,通過對數據的挖掘分析來影響企業的商業決策。

Hadoop工程師用人企業普遍要求掌握以下技術:

1、熟悉Linux開發環境,熟悉Shell命令

2、熟悉Java、python、scala語言(至少一種)

3、具備較豐富的基于Hadoop、Map Reduce、Yarn、Storm、Spark、Hive、Hbase、kafka、Flume、HDFS、Spark Streaming等的大數據處理項目經驗。

.在入門學習大數據的過程當中有遇見學習,行業,缺乏系統學習路線,系統學習規劃,歡迎你加入我的大數據學習交流裙:529867072 ,裙文件有我這幾年整理的大數據學習手冊,開發工具,PDF文檔書籍,你可以自行下載。
做大數據工程師需要掌握哪些技能呢?

于是每家公司對大數據工作的要求不盡相同:有的強調數據庫編程、有的突出應用數學和統計學知識、有的則要求有咨詢公司或投行相關的經驗、有些是希望能找到懂得產品和市場的應用型人才。正因為如此,很多公司會針對自己的業務類型和團隊分工,給這群與大數據打交道的人一些新的頭銜和定義:數據挖掘工程師、大數據專家、數據研究員、用戶分析專家等都是經常在國內公司里出現的Title,我們將其統稱為“大數據工程師”。

由于國內的大數據工作還處在一個有待開發的階段,因此能從其中挖掘出多少價值完全取決于工程師的個人能力。已經身處這個行業的專家給出了一些人才需求的大體框架,包括要有計算機編碼能力、數學及統計學相關背景,當然如果能對一些特定領域或行業有比較深入的了解,對于其快速判斷并抓準關鍵因素則更有幫助。

目前國內的大數據應用多集中在互聯網領域,有超過56%的企業在籌備發展大數據研究,“未來5年,94%的公司都會需要數據科學家。”

image

大數據只需要學習Java的標準版JavaSE就可以了,像Servlet、JSP、Tomcat、Struct、Spring、Hibernate,Mybaits都是JavaEE方向的技術在大數據技術里用到的并不多,只需要了解就可以了,當然Java怎么連接數據庫還是要知道的,像JDBC一定要掌握一下,有同學說Hibernate或Mybaits也能連接數據庫啊,為什么不學習一下,我這里不是說學這些不好,而是說學這些可能會用你很多時間,到最后工作中也不常用,我還沒看到誰做大數據處理用到這兩個東西的,當然你的精力很充足的話,可以學學Hibernate或Mybaits的原理,不要只學API,這樣可以增加你對Java操作數據庫的理解,因為這兩個技術的核心就是Java的反射加上JDBC的各種使用。

Linux:因為大數據相關軟件都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟件的運行環境和網絡環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以后新出的大數據技術學習起來更快。

好說完基礎了,再說說還需要學習哪些大數據技術,可以按我寫的順序學下去。

Hadoop:這是現在流行的大數據處理平臺幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop里面包括幾個組件HDFS、MapReduce和YARN,HDFS是存儲數據的地方就像我們電腦的硬盤一樣文件都存儲在這個上面,MapReduce是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。YARN是體現Hadoop平臺概念的重要組件有了它大數據生態體系的其它軟件就能在hadoop上運行了,這樣就能更好的利用HDFS大存儲的優勢和節省更多的資源比如我們就不用再單獨建一個spark的集群了,讓它直接跑在現有的hadoop yarn上面就可以了。其實把Hadoop的這些組件學明白你就能做大數據的處理了,只不過你現在還可能對"大數據"到底有多大還沒有個太清楚的概念,聽我的別糾結這個。等以后你工作了就會有很多場景遇到幾十T/幾百T大規模的數據,到時候你就不會覺得數據大真好,越大越有你頭疼的。當然別怕處理這么大規模的數據,因為這是你的價值所在,讓那些個搞Javaee的php的html5的和DBA的羨慕去吧。

Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以后的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟件對它有依賴,對于我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。

Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql數據庫,因為一會裝hive的時候要用到,mysql需要掌握到什么層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的權限,修改root的密碼,創建數據庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。

Sqoop:這個是用于把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。

Hive:這個東西對于會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapReduce程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。

Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapReduce、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警并能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。

Hbase:這是Hadoop生態體系中的NOSQL數據庫,他的數據是按照key和value的形式存儲的并且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用于大數據處理完成之后的存儲目的地。

Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎么處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,并寫到各種數據接受方(比如Kafka)的。

Spark:它是用來彌補基于MapReduce處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬盤。特別適合做迭代運算,所以算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

青冈县| 攀枝花市| 彭阳县| 普安县| 吴忠市| 和田县| 凌云县| 吉林省| 临猗县| 芒康县| 洛阳市| 湘西| 当阳市| 怀来县| 仁寿县| 原阳县| 清原| 华安县| 西林县| 正宁县| 津南区| 肇源县| 鄱阳县| 枣阳市| 遵义市| 织金县| 凌云县| 石首市| 钟祥市| 绍兴县| 永吉县| 磴口县| 新晃| 绿春县| 定远县| 大宁县| 平利县| 灵台县| 郎溪县| 泸西县| 江阴市|