您好,登錄后才能下訂單哦!
這篇文章給大家介紹Docker五種存儲驅動原理及應用場景是怎樣的,內容非常詳細,感興趣的小伙伴們可以參考借鑒,希望對大家能有所幫助。
Docker最開始采用AUFS作為文件系統,也得益于AUFS分層的概念,實現了多個Container可以共享同一個image。但由于AUFS未并入Linux內核,且只支持Ubuntu,考慮到兼容性問題,在Docker 0.7版本中引入了存儲驅動, 目前,Docker支持AUFS、Btrfs、Device mapper、OverlayFS、ZFS五種存儲驅動。就如Docker官網上說的,沒有單一的驅動適合所有的應用場景,要根據不同的場景選擇合適的存儲驅動,才能有效的提高Docker的性能。如何選擇適合的存儲驅動,要先了解存儲驅動原理才能更好的判斷,本文介紹一下Docker五種存儲驅動原理詳解及應用場景及IO性能測試的對比。在講原理前,先講一下寫時復制和寫時分配兩個技術。
所有驅動都用到的技術——寫時復制(CoW)。CoW就是copy-on-write,表示只在需要寫時才去復制,這個是針對已有文件的修改場景。比如基于一個image啟動多個Container,如果為每個Container都去分配一個image一樣的文件系統,那么將會占用大量的磁盤空間。而CoW技術可以讓所有的容器共享image的文件系統,所有數據都從image中讀取,只有當要對文件進行寫操作時,才從image里把要寫的文件復制到自己的文件系統進行修改。所以無論有多少個容器共享同一個image,所做的寫操作都是對從image中復制到自己的文件系統中的復本上進行,并不會修改image的源文件,且多個容器操作同一個文件,會在每個容器的文件系統里生成一個復本,每個容器修改的都是自己的復本,相互隔離,相互不影響。使用CoW可以有效的提高磁盤的利用率。
而寫時分配是用在原本沒有這個文件的場景,只有在要新寫入一個文件時才分配空間,這樣可以提高存儲資源的利用率。比如啟動一個容器,并不會為這個容器預分配一些磁盤空間,而是當有新文件寫入時,才按需分配新空間。
AUFS(AnotherUnionFS)是一種Union FS,是文件級的存儲驅動。AUFS能透明覆蓋一或多個現有文件系統的層狀文件系統,把多層合并成文件系統的單層表示。簡單來說就是支持將不同目錄掛載到同一個虛擬文件系統下的文件系統。這種文件系統可以一層一層地疊加修改文件。無論底下有多少層都是只讀的,只有最上層的文件系統是可寫的。當需要修改一個文件時,AUFS創建該文件的一個副本,使用CoW將文件從只讀層復制到可寫層進行修改,結果也保存在可寫層。在Docker中,底下的只讀層就是image,可寫層就是Container。
Overlay是Linux內核3.18后支持的,也是一種Union FS,和AUFS的多層不同的是Overlay只有兩層:一個upper文件系統和一個lower文件系統,分別代表Docker的鏡像層和容器層。當需要修改一個文件時,使用CoW將文件從只讀的lower復制到可寫的upper進行修改,結果也保存在upper層。在Docker中,底下的只讀層就是image,可寫層就是Container。
Device mapper是Linux內核2.6.9后支持的,提供的一種從邏輯設備到物理設備的映射框架機制,在該機制下,用戶可以很方便的根據自己的需要制定實現存儲資源的管理策略。前面講的AUFS和OverlayFS都是文件級存儲,而Device mapper是塊級存儲,所有的操作都是直接對塊進行操作,而不是文件。Device mapper驅動會先在塊設備上創建一個資源池,然后在資源池上創建一個帶有文件系統的基本設備,所有鏡像都是這個基本設備的快照,而容器則是鏡像的快照。所以在容器里看到文件系統是資源池上基本設備的文件系統的快照,并不有為容器分配空間。當要寫入一個新文件時,在容器的鏡像內為其分配新的塊并寫入數據,這個叫用時分配。當要修改已有文件時,再使用CoW為容器快照分配塊空間,將要修改的數據復制到在容器快照中新的塊里再進行修改。Device mapper 驅動默認會創建一個100G的文件包含鏡像和容器。每一個容器被限制在10G大小的卷內,可以自己配置調整。
Btrfs被稱為下一代寫時復制文件系統,并入Linux內核,也是文件級級存儲,但可以像Device mapper一直接操作底層設備。Btrfs把文件系統的一部分配置為一個完整的子文件系統,稱之為subvolume 。那么采用 subvolume,一個大的文件系統可以被劃分為多個子文件系統,這些子文件系統共享底層的設備空間,在需要磁盤空間時便從底層設備中分配,類似應用程序調用 malloc()分配內存一樣。為了靈活利用設備空間,Btrfs 將磁盤空間劃分為多個chunk 。每個chunk可以使用不同的磁盤空間分配策略。比如某些chunk只存放metadata,某些chunk只存放數據。這種模型有很多優點,比如Btrfs支持動態添加設備。用戶在系統中增加新的磁盤之后,可以使用Btrfs的命令將該設備添加到文件系統中。Btrfs把一個大的文件系統當成一個資源池,配置成多個完整的子文件系統,還可以往資源池里加新的子文件系統,而基礎鏡像則是子文件系統的快照,每個子鏡像和容器都有自己的快照,這些快照則都是subvolume的快照。
當寫入一個新文件時,為在容器的快照里為其分配一個新的數據塊,文件寫在這個空間里,這個叫用時分配。而當要修改已有文件時,使用CoW復制分配一個新的原始數據和快照,在這個新分配的空間變更數據,變結束再更新相關的數據結構指向新子文件系統和快照,原來的原始數據和快照沒有指針指向,被覆蓋。
ZFS 文件系統是一個革命性的全新的文件系統,它從根本上改變了文件系統的管理方式,ZFS 完全拋棄了“卷管理”,不再創建虛擬的卷,而是把所有設備集中到一個存儲池中來進行管理,用“存儲池”的概念來管理物理存儲空間。過去,文件系統都是構建在物理設備之上的。為了管理這些物理設備,并為數據提供冗余,“卷管理”的概念提供了一個單設備的映像。而ZFS創建在虛擬的,被稱為“zpools”的存儲池之上。每個存儲池由若干虛擬設備(virtual devices,vdevs)組成。這些虛擬設備可以是原始磁盤,也可能是一個RAID1鏡像設備,或是非標準RAID等級的多磁盤組。于是zpool上的文件系統可以使用這些虛擬設備的總存儲容量。
下面看一下在Docker里ZFS的使用。首先從zpool里分配一個ZFS文件系統給鏡像的基礎層,而其他鏡像層則是這個ZFS文件系統快照的克隆,快照是只讀的,而克隆是可寫的,當容器啟動時則在鏡像的最頂層生成一個可寫層。
當要寫一個新文件時,使用按需分配,一個新的數據快從zpool里生成,新的數據寫入這個塊,而這個新空間存于容器(ZFS的克隆)里。
當要修改一個已存在的文件時,使用寫時復制,分配一個新空間并把原始數據復制到新空間完成修改。
AUFS和Overlay都是聯合文件系統,但AUFS有多層,而Overlay只有兩層,所以在做寫時復制操作時,如果文件比較大且存在比較低的層,則AUSF可能會慢一些。而且Overlay并入了linux kernel mainline,AUFS沒有,所以可能會比AUFS快。但Overlay還太年輕,要謹慎在生產使用。而AUFS做為docker的第一個存儲驅動,已經有很長的歷史,比較的穩定,且在大量的生產中實踐過,有較強的社區支持。目前開源的DC/OS指定使用Overlay。
Overlay是文件級存儲,Device mapper是塊級存儲,當文件特別大而修改的內容很小,Overlay不管修改的內容大小都會復制整個文件,對大文件進行修改顯示要比小文件要消耗更多的時間,而塊級無論是大文件還是小文件都只復制需要修改的塊,并不是整個文件,在這種場景下,顯然device mapper要快一些。因為塊級的是直接訪問邏輯盤,適合IO密集的場景。而對于程序內部復雜,大并發但少IO的場景,Overlay的性能相對要強一些。
Device mapper和Btrfs都是直接對塊操作,都不支持共享存儲,表示當有多個容器讀同一個文件時,需要生活多個復本,所以這種存儲驅動不適合在高密度容器的PaaS平臺上使用。而且在很多容器啟停的情況下可能會導致磁盤溢出,造成主機不能工作。Device mapper不建議在生產使用。Btrfs在docker build可以很高效。
ZFS最初是為擁有大量內存的Salaris服務器設計的,所在在使用時對內存會有影響,適合內存大的環境。ZFS的COW使碎片化問題更加嚴重,對于順序寫生成的大文件,如果以后隨機的對其中的一部分進行了更改,那么這個文件在硬盤上的物理地址就變得不再連續,未來的順序讀會變得性能比較差。ZFS支持多個容器共享一個緩存塊,適合PaaS和高密度的用戶場景。
測試工具:IOzone(是一個文件系統的benchmark工具,可以測試不同的操作系統中文件系統的讀寫性能)
測試場景:從4K到1G文件的順序和隨機IO性能
測試方法:基于不同的存儲驅動啟動容器,在容器內安裝IOzone,執行命令:
./iozone -a -n 4k -g 1g -i 0 -i 1 -i 2 -f /root/test.rar -Rb ./iozone.xls
Write:測試向一個新文件寫入的性能。
Re-write:測試向一個已存在的文件寫入的性能。
Read:測試讀一個已存在的文件的性能。
Re-Read:測試讀一個最近讀過的文件的性能。
Random Read:測試讀一個文件中的隨機偏移量的性能。
Random Write:測試寫一個文件中的隨機偏移量的性能。
通過以上的性能數據可以看到:
AUFS在讀的方面性能相比Overlay要差一些,但在寫的方面性能比Overlay要好。
device mapper在512M以上文件的讀寫性能都非常的差,但在512M以下的文件讀寫性能都比較好。
btrfs在512M以上的文件讀寫性能都非常好,但在512M以下的文件讀寫性能相比其他的存儲驅動都比較差。
ZFS整體的讀寫性能相比其他的存儲驅動都要差一些。 簡單的測試了一些數據,對測試出來的數據原理還需要進一步的解析。
關于Docker五種存儲驅動原理及應用場景是怎樣的就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。