91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Flume如何整合kafka

發布時間:2021-12-13 17:05:43 來源:億速云 閱讀:202 作者:小新 欄目:云計算

這篇文章主要為大家展示了“Flume如何整合kafka”,內容簡而易懂,條理清晰,希望能夠幫助大家解決疑惑,下面讓小編帶領大家一起研究并學習一下“Flume如何整合kafka”這篇文章吧。

Using Kafka with Flume

在CDH 5.2.0 及更高的版本中, Flume 包含一個Kafka source and sink。使用它們可以讓數據從Kafka流入Hadoop或者從任何Flume source 流入Kafka。

     重要提示:不能配置一個Kafka source發送數據到 a Kafka sink.如果這么做, the Kafka source sets the topic in the event header, overriding the sink configuration and creating an infinite loop, sending messages back and forth between the source and sink. If you need to use both a source and a sink, use an interceptor to modify the event header and set a different topic.

Kafka Source

使用Kafka source 讓數據從Kafka topics 流入 Hadoop. The Kafka source 可以與任何Flume sink合并, 這樣很容易把數據從 Kafka 寫到 HDFS, HBase, 以及Solr.

下面的 Flume 配置示例,是使用 Kafka source 發送數據到 HDFS sink:

tier1.sources  = source1
 tier1.channels = channel1
 tier1.sinks = sink1
 
 tier1.sources.source1.type = org.apache.flume.source.kafka.KafkaSource
 tier1.sources.source1.zookeeperConnect = zk01.example.com:2181
 tier1.sources.source1.topic = weblogs
 tier1.sources.source1.groupId = flume
 tier1.sources.source1.channels = channel1
 tier1.sources.source1.interceptors = i1
 tier1.sources.source1.interceptors.i1.type = timestamp
 tier1.sources.source1.kafka.consumer.timeout.ms = 100
 
 tier1.channels.channel1.type = memory
 tier1.channels.channel1.capacity = 10000
 tier1.channels.channel1.transactionCapacity = 1000
 
 tier1.sinks.sink1.type = hdfs
 tier1.sinks.sink1.hdfs.path = /tmp/kafka/%{topic}/%y-%m-%d
 tier1.sinks.sink1.hdfs.rollInterval = 5
 tier1.sinks.sink1.hdfs.rollSize = 0
 tier1.sinks.sink1.hdfs.rollCount = 0
 tier1.sinks.sink1.hdfs.fileType = DataStream
 tier1.sinks.sink1.channel = channel1

為了更高的吞吐量, 可以配置多個Kafka sources讀取一個 topic.如果所有sources配置一個相同的groupID, 并且topic 有多個分區, 設置每一個source 從不同的分區讀取數據,就可以改善效率.

下面的列表描述Kafka source 支持的參數; 必須的參數使用粗體列出.

Table 1. Kafka Source Properties  

Property NameDefault ValueDescription
type  必須設置為org.apache.flume.source.kafka.KafkaSource.
zookeeperConnect  The URI of the ZooKeeper server or quorum used by Kafka. This can be a single node (for example, zk01.example.com:2181) or a comma-separated list of nodes in a ZooKeeper quorum (for example, zk01.example.com:2181,zk02.example.com:2181, zk03.example.com:2181).
topic  source 讀取消息的Kafka topic。 Flume 每個source只支持一個 topic.。
groupIDflumeThe unique identifier of the Kafka consumer group. Set the same groupID in all sources to indicate that they belong to the same consumer group.
batchSize1000向channel寫入消息的最多條數
batchDurationMillis1000向channel書寫的最大時間 (毫秒)  。 
其他Kafka consumer  支持的屬性 通過Kafka source配置Kafka consumer。可以使用任何consumer 支持的屬性。 Prepend the consumer property name with the prefix kafka. (for example, kafka.fetch.min.bytes). See the Kafka documentation for the full list of Kafka consumer properties.

調優

Kafka source 重寫了兩個Kafka consumer 的屬性:

  1. auto.commit.enable 設置為 false by the source, and every batch is committed. 為了改善性能, 設置為 true 改為使用 kafka.auto.commit.enable。 這個可能會丟失數據 if the source goes down before committing.

  2. consumer.timeout.ms設置為 10, so when Flume polls Kafka for new data, it waits no more than 10 ms for the data to be available. Setting this to a higher value can reduce CPU utilization due to less frequent polling, but introduces latency in writing batches to the channel.

Kafka Sink

使用Kafka sink 從一個 Flume source發送數據到 Kafka . You can use the Kafka sink in addition to Flume sinks such as HBase or HDFS.

The following Flume configuration example uses a Kafka sink with an exec source:

tier1.sources  = source1
 tier1.channels = channel1
 tier1.sinks = sink1
 
 tier1.sources.source1.type = exec
 tier1.sources.source1.command = /usr/bin/vmstat 1
 tier1.sources.source1.channels = channel1
 
 tier1.channels.channel1.type = memory
 tier1.channels.channel1.capacity = 10000
 tier1.channels.channel1.transactionCapacity = 1000
 
 tier1.sinks.sink1.type = org.apache.flume.sink.kafka.KafkaSink
 tier1.sinks.sink1.topic = sink1
 tier1.sinks.sink1.brokerList = kafka01.example.com:9092,kafka02.example.com:9092
 tier1.sinks.sink1.channel = channel1
 tier1.sinks.sink1.batchSize = 20

The following table describes parameters the Kafka sink supports; required properties are listed in bold.

Table 2. Kafka Sink Properties  

Property NameDefault ValueDescription
type  必須設置為: org.apache.flume.sink.kafka.KafkaSink.
brokerList  The brokers the Kafka sink uses to discover topic partitions, formatted as a comma-separated list of hostname:port entries. You do not need to specify the entire list of brokers, but Cloudera recommends that you specify at least two for high availability.
topicdefault-flume-topicThe Kafka topic to which messages are published by default. If the event header contains a topic field, the event is published to the designated topic, overriding the configured topic.
batchSize100The number of messages to process in a single batch. Specifying a larger batchSize can improve throughput and increase latency.
requiredAcks1The number of replicas that must acknowledge a message before it is written successfully. Possible values are 0 (do not wait for an acknowledgement), 1 (wait for the leader to acknowledge only), and -1 (wait for all replicas to acknowledge). To avoid potential loss of data in case of a leader failure, set this to -1.
其他Kafka producer所支持的屬性 Used to configure the Kafka producer used by the Kafka sink. You can use any producer properties supported by Kafka. Prepend the producer property name with the prefix kafka. (for example, kafka.compression.codec). See the Kafka documentation for the full list of Kafka producer properties.

Kafka sink 使用 topic 以及 key properties from the FlumeEvent headers to determine where to send events in Kafka. If the header contains the topic property, that event is sent to the designated topic, overriding the configured topic. If the header contains the key property, that key is used to partition events within the topic. Events with the same key are sent to the same partition. If the key parameter is not specified, events are distributed randomly to partitions. Use these properties to control the topics and partitions to which events are sent through the Flume source or interceptor.

Kafka Channel

CDH 5.3 以及更高的版本包含一個Kafka channel to Flume in addition to the existing memory and file channels. 可以使用Kafka channel:

  • To write to Hadoop directly from Kafka without using a source.不使用source,從Kafka直接向hadoop中寫數據。

  • To write to Kafka directly from Flume sources without additional buffering.不使用額外的緩沖區直接從Flume source向Kafka寫數據。

  • As a reliable and highly available channel for any source/sink combination.可以與任何source/sink結合。

如下的 Flume 配置使用了一個Kafka channel 以及一個exec source 和 hdfs sink:  

tier1.sources = source1
tier1.channels = channel1
tier1.sinks = sink1

tier1.sources.source1.type = exec
tier1.sources.source1.command = /usr/bin/vmstat 1
tier1.sources.source1.channels = channel1

tier1.channels.channel1.type = org.apache.flume.channel.kafka.KafkaChannel
tier1.channels.channel1.capacity = 10000
tier1.channels.channel1.transactionCapacity = 1000
tier1.channels.channel1.brokerList = kafka02.example.com:9092,kafka03.example.com:9092
tier1.channels.channel1.topic = channel2
tier1.channels.channel1.zookeeperConnect = zk01.example.com:2181
tier1.channels.channel1.parseAsFlumeEvent = true

tier1.sinks.sink1.type = hdfs
tier1.sinks.sink1.hdfs.path = /tmp/kafka/channel
tier1.sinks.sink1.hdfs.rollInterval = 5
tier1.sinks.sink1.hdfs.rollSize = 0
tier1.sinks.sink1.hdfs.rollCount = 0
tier1.sinks.sink1.hdfs.fileType = DataStream
tier1.sinks.sink1.channel = channel1

下面的列表描述了Kafka channel 所支持的參數; 粗體為必要參數.

Table 3. Kafka Channel Properties  

Property NameDefault ValueDescription
type  必須設置為:org.apache.flume.channel.kafka.KafkaChannel.
brokerList  The brokers the Kafka channel uses to discover topic partitions, formatted as a comma-separated list of hostname:port entries. You do not need to specify the entire list of brokers, but Cloudera recommends that you specify at least two for high availability.
zookeeperConnect  The URI of the ZooKeeper server or quorum used by Kafka. This can be a single node (for example, zk01.example.com:2181) or a comma-separated list of nodes in a ZooKeeper quorum (for example, zk01.example.com:2181,zk02.example.com:2181, zk03.example.com:2181).
topicflume-channelThe Kafka topic the channel will use.
groupIDflumeThe unique identifier of the Kafka consumer group the channel uses to register with Kafka.
parseAsFlumeEventtrueSet to true if a Flume source is writing to the channel and expects AvroDataums with the FlumeEvent schema (org.apache.flume.source.avro.AvroFlumeEvent) in the channel. Set to false if other producers are writing to the topic that the channel is using.
readSmallestOffsetfalseIf true, reads all data in the topic. If false, reads only data written after the channel has started. Only used when parseAsFlumeEvent is false.
kafka.consumer.timeout.ms100當向sink寫數據時輪詢的間隔時間.
其他Kafka producer所支持的屬性 Used to configure the Kafka producer. You can use any producer properties supported by Kafka. Prepend the producer property name with the prefix kafka. (for example, kafka.compression.codec). See the Kafka documentation for the full list of Kafka producer properties.


<< Using Kafka with Spark Streaming?2015 Cloudera, Inc. All rights reservedAdditional Information >>

Terms and Conditions  Privacy Policy

以上是“Flume如何整合kafka”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

武城县| 云南省| 石柱| 蒙城县| 南京市| 铜鼓县| 大冶市| 泗水县| 汾阳市| 沾益县| 集安市| 渝北区| 巍山| 青岛市| 屏边| 霍城县| 保亭| 台东市| 大埔区| 玉环县| 来凤县| 米脂县| 哈密市| 乌鲁木齐市| 涿州市| 延寿县| 班戈县| 会东县| 山丹县| 阿尔山市| 巴楚县| 高邑县| 临夏市| 红安县| 通渭县| 宝兴县| 博爱县| 会泽县| 高青县| 铜川市| 丰县|