您好,登錄后才能下訂單哦!
本篇內容主要講解“Storm怎么實現單詞計數”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“Storm怎么實現單詞計數”吧!
在上一次單詞計數的基礎上做如下改動: 使用 自定義 分組策略,將首字母相同的單詞發送給同一個task計數
自定義 CustomStreamGrouping
package com.zhch.v4; import backtype.storm.generated.GlobalStreamId; import backtype.storm.grouping.CustomStreamGrouping; import backtype.storm.task.WorkerTopologyContext; import java.io.Serializable; import java.util.ArrayList; import java.util.List; public class ModuleGrouping implements CustomStreamGrouping, Serializable { private List<Integer> tasks; @Override public void prepare(WorkerTopologyContext workerContext, GlobalStreamId streamId, List<Integer> targetTasks) { this.tasks = targetTasks; } @Override public List<Integer> chooseTasks(int taskId, List<Object> values) { List<Integer> taskIds = new ArrayList<Integer>(); if (values.size() > 0) { String str = values.get(0).toString(); if (str.isEmpty()) { taskIds.add(0); } else { Integer index = str.charAt(0) % tasks.size(); taskIds.add(tasks.get(index)); } } return taskIds; } }
數據源spout
package com.zhch.v4; import backtype.storm.spout.SpoutOutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseRichSpout; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Values; import java.io.BufferedReader; import java.io.FileReader; import java.util.Map; import java.util.UUID; import java.util.concurrent.ConcurrentHashMap; public class SentenceSpout extends BaseRichSpout { private FileReader fileReader = null; private boolean completed = false; private ConcurrentHashMap<UUID, Values> pending; private SpoutOutputCollector collector; @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new Fields("sentence")); } @Override public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) { this.collector = spoutOutputCollector; this.pending = new ConcurrentHashMap<UUID, Values>(); try { this.fileReader = new FileReader(map.get("wordsFile").toString()); } catch (Exception e) { throw new RuntimeException("Error reading file [" + map.get("wordsFile") + "]"); } } @Override public void nextTuple() { if (completed) { try { Thread.sleep(1000); } catch (InterruptedException e) { } } String line; BufferedReader reader = new BufferedReader(fileReader); try { while ((line = reader.readLine()) != null) { Values values = new Values(line); UUID msgId = UUID.randomUUID(); this.pending.put(msgId, values); this.collector.emit(values, msgId); } } catch (Exception e) { throw new RuntimeException("Error reading tuple", e); } finally { completed = true; } } @Override public void ack(Object msgId) { this.pending.remove(msgId); } @Override public void fail(Object msgId) { this.collector.emit(this.pending.get(msgId), msgId); } }
實現語句分割bolt
package com.zhch.v4; import backtype.storm.task.OutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseRichBolt; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Tuple; import backtype.storm.tuple.Values; import java.util.Map; public class SplitSentenceBolt extends BaseRichBolt { private OutputCollector collector; @Override public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) { this.collector = outputCollector; } @Override public void execute(Tuple tuple) { String sentence = tuple.getStringByField("sentence"); String[] words = sentence.split(" "); for (String word : words) { collector.emit(tuple, new Values(word)); } this.collector.ack(tuple); } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new Fields("word")); } }
實現單詞計數bolt
package com.zhch.v4; import backtype.storm.task.OutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseRichBolt; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Tuple; import java.io.BufferedWriter; import java.io.FileWriter; import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; public class WordCountBolt extends BaseRichBolt { private OutputCollector collector; private HashMap<String, Long> counts = null; @Override public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) { this.collector = outputCollector; this.counts = new HashMap<String, Long>(); } @Override public void execute(Tuple tuple) { String word = tuple.getStringByField("word"); Long count = this.counts.get(word); if (count == null) { count = 0L; } count++; this.counts.put(word, count); BufferedWriter writer = null; try { writer = new BufferedWriter(new FileWriter("/home/grid/stormData/result.txt")); List<String> keys = new ArrayList<String>(); keys.addAll(this.counts.keySet()); Collections.sort(keys); for (String key : keys) { Long c = this.counts.get(key); writer.write(key + " : " + c); writer.newLine(); writer.flush(); } } catch (Exception e) { e.printStackTrace(); } finally { if (writer != null) { try { writer.close(); } catch (Exception e) { e.printStackTrace(); } writer = null; } } this.collector.ack(tuple); } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new Fields("word", "count")); } }
實現單詞計數topology
package com.zhch.v4; import backtype.storm.Config; import backtype.storm.LocalCluster; import backtype.storm.StormSubmitter; import backtype.storm.topology.TopologyBuilder; public class WordCountTopology { public static final String SENTENCE_SPOUT_ID = "sentence-spout"; public static final String SPLIT_BOLT_ID = "split-bolt"; public static final String COUNT_BOLT_ID = "count-bolt"; public static final String TOPOLOGY_NAME = "word-count-topology-v4"; public static void main(String[] args) throws Exception { SentenceSpout spout = new SentenceSpout(); SplitSentenceBolt spiltBolt = new SplitSentenceBolt(); WordCountBolt countBolt = new WordCountBolt(); TopologyBuilder builder = new TopologyBuilder(); builder.setSpout(SENTENCE_SPOUT_ID, spout, 2); builder.setBolt(SPLIT_BOLT_ID, spiltBolt, 2).setNumTasks(4) .shuffleGrouping(SENTENCE_SPOUT_ID); builder.setBolt(COUNT_BOLT_ID, countBolt, 2) .customGrouping(SPLIT_BOLT_ID, new ModuleGrouping()); //使用 自定義 分組策略 Config config = new Config(); config.put("wordsFile", args[0]); if (args != null && args.length > 1) { config.setNumWorkers(2); //集群模式啟動 StormSubmitter.submitTopology(args[1], config, builder.createTopology()); } else { LocalCluster cluster = new LocalCluster(); cluster.submitTopology(TOPOLOGY_NAME, config, builder.createTopology()); try { Thread.sleep(5 * 1000); } catch (InterruptedException e) { } cluster.killTopology(TOPOLOGY_NAME); cluster.shutdown(); } } }
提交到Storm集群
storm jar Storm02-1.0-SNAPSHOT.jar com.zhch.v4.WordCountTopology /home/grid/stormData/input.txt word-count-topology-v4
運行結果:
[grid@hadoop5 stormData]$ cat result.txt Apache : 1 ETL : 1 It : 1 Storm : 4 a : 4 analytics : 1 and : 5 any : 1 at : 1 can : 1 cases: : 1 clocked : 1 computation : 2 continuous : 1 easy : 2 guarantees : 1 is : 6 it : 2 machine : 1 makes : 1 many : 1 million : 1 more : 1 of : 2 online : 1 open : 1 operate : 1 over : 1 scalable : 1 second : 1 set : 1 simple : 1 source : 1 streams : 1 system : 1 unbounded : 1 up : 1 use : 2 used : 1 what : 1 will : 1 with : 1 your : 1 [grid@hadoop6 stormData]$ cat result.txt Hadoop : 1 RPC : 1 batch : 1 be : 2 benchmark : 1 data : 2 did : 1 distributed : 2 doing : 1 fast: : 1 fault-tolerant : 1 for : 2 free : 1 fun : 1 has : 1 language : 1 learning : 1 lot : 1 node : 1 per : 2 process : 1 processed : 2 processing : 2 programming : 1 realtime : 3 reliably : 1 to : 3 torm : 1 tuples : 1
到此,相信大家對“Storm怎么實現單詞計數”有了更深的了解,不妨來實際操作一番吧!這里是億速云網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。