91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

老司機告訴你大數據開發:學Hadoop好還是Spark好?

發布時間:2020-07-25 21:34:28 來源:網絡 閱讀:301 作者:白金大數據 欄目:大數據

相信看這篇文章的你們,都和我一樣對Hadoop和Apache Spark的選擇有一定的疑惑,今天查了不少資料,我們就來談談這兩種 平臺的比較與選擇吧,看看對于工作和發展,到底哪個更好。

一、Hadoop與Spark

1.Spark

Spark是一個用來實現快速而通用的集群計算的平臺。速度方面,Spark擴展了廣泛使用的MapReduce計算模型,而且高效地支持更多計算模式,包括交互式查詢和流處理。

Spark項目包含多個緊密集成的組件。Spark的核心是一個對由很多計算任務組成的、運行在多個工作機器或者是一個計算集群上的應用進行調度、分發以及監控的計算引擎。

2.Hadoop

Hadoop是一個由Apache基金會所開發的分布式系統基礎架構。用戶可以在不了解分布式底層細節的情況下,開發分布式程序。充分利用集群的威力進行高速運算和存儲。Hadoop的框架最核心的設計就是:HDFS和MapReduce。HDFS為海量的數據提供了存儲,則MapReduce為海量的數據提供了計算。

?大數據是未來的發展方向,正在挑戰我們的分析能力及對世界的認知方式,因此,我們與時俱進,迎接變化,并不斷的成長,大數據學習扣扣群606+859+705?一起討論進步學習。?

二、異與同

解決問題的層面不一樣

首先,Hadoop和Apache Spark兩者都是大數據框架,但是各自存在的目的不盡相同。Hadoop實質上更多是一個分布式數據基礎設施: 它將巨大的數據集分派到一個由普通計算機組成的集群中的多個節點進行存儲,意味著您不需要購買和維護昂貴的服務器硬件。同時,Hadoop還會索引和跟蹤這些數據,讓大數據處理和分析效率達到前所未有的高度。Spark,則是那么一個專門用來對那些分布式存儲的大數據進行處理的工具,它并不會進行分布式數據的存儲。

兩者可合可分

Hadoop除了提供為大家所共識的HDFS分布式數據存儲功能之外,還提供了叫做MapReduce的數據處理功能。所以這里我們完全可以拋開Spark,使用Hadoop自身的MapReduce來完成數據的處理。

相反,Spark也不是非要依附在Hadoop身上才能生存。但如上所述,畢竟它沒有提供文件管理系統,所以,它必須和其他的分布式文件系統進行集成才能運作。這里我們可以選擇Hadoop的HDFS,也可以選擇其他的基于云的數據系統平臺。但Spark默認來說還是被用在Hadoop上面的,畢竟,大家都認為它們的結合是最好的。

順帶說一下什么是mapreduce:我們要數圖書館中的所有書。你數1號書架,我數2號書架。這就是“Map”。我們人越多,數書就更快。現在我們到一起,把所有人的統計數加在一起。這就是“Reduce”。

Spark數據處理速度秒殺MapReduce

Spark因為其處理數據的方式不一樣,會比MapReduce快上很多。MapReduce是分步對數據進行處理的: ”從集群中讀取數據,進行一次處理,將結果寫到集群,從集群中讀取更新后的數據,進行下一次的處理,將結果寫到集群,等等…“ Booz Allen Hamilton的數據科學家Kirk Borne如此解析。

反觀Spark,它會在內存中以接近“實時”的時間完成所有的數據分析:“從集群中讀取數據,完成所有必須的分析處理,將結果寫回集群,完成,” Born說道。Spark的批處理速度比MapReduce快近10倍,內存中的數據分析速度則快近100倍。如果需要處理的數據和結果需求大部分情況下是靜態的,且你也有耐心等待批處理的完成的話,MapReduce的處理方式也是完全可以接受的。

但如果你需要對流數據進行分析,比如那些來自于工廠的傳感器收集回來的數據,又或者說你的應用是需要多重數據處理的,那么你也許更應該使用Spark進行處理。大部分機器學習算法都是需要多重數據處理的。此外,通常會用到Spark的應用場景有以下方面:實時的市場活動,在線產品推薦,網絡安全分析,機器日記監控等。

Recovery 恢復

兩者的災難恢復方式迥異,但是都很不錯。因為Hadoop將每次處理后的數據都寫入到磁盤上,所以其天生就能很有彈性的對系統錯誤進行處理。Spark的數據對象存儲在分布于數據集群中的叫做彈性分布式數據集(RDD: Resilient Distributed Dataset)中。“這些數據對象既可以放在內存,也可以放在磁盤,所以RDD同樣也可以提供完成的災難恢復功能”

三、學哪個?

其實,正如所了解的那樣,Spark的確是大數據行業中的后起之秀,與Hadoop相比,Spark有很多的優勢。Hadoop之所以在大數據行業能夠得到充分的認同主要是因為:

Hadoop解決了大數據的可靠存儲和處理問題;

Hadoop的開源性,這能讓很多大數據從業人員在里面找到靈感,方便實用;

Hadoop經過了多年的開發,擁有完整的生態系統。

HDFS在由普通PC組成的集群上提供高可靠的文件存儲,通過將塊保存多個副本的辦法解決服務器或硬板壞掉的問題。

MapReduce通過簡單的Mapper和Reducer的抽象提供一個變成模型,可以在一個由幾十臺至上百臺的PC組成的不可靠集群上并發地,分布式地處理大量的數據集,而把并發、分布式和故障恢復等計算細節隱藏起來。

Hadoop也有許多局限和不足,籠統的講,在數據量不斷擴大的情況下,Hadoop的運算速度會越發顯得吃力。雖然現階段,Hadoop在大數據行業內仍然有很高頻率的應用,但不難想象在若干年后,數據量又上升幾個數量級時,Hadoop所面臨的窘境。而Spark的運算速度是Hadoop的百分之一甚至更快,因此,在未來,Spark必然會取代Hadoop,主宰大數據行業。

那是不是就可以跳過Hadoop,只學Spark呢?當然不是,有以下原因:

現階段,Hadoop仍然主導著大數據領域,我們可以學習先進的技術,但更是為了現階段的就業,就目前階段而言,學大數據必學Hadoop。

MapReduce中有許多經典的思想,值得我們學習,這對我們理解大數據十分有幫助。

確切的講,Spark要替換的是Hadoop中的MapReduce,而不是Hadoop,Hadoop是一個工具包,而Spark和MapReduce一樣,只是一種工具而已。

結論:

如果你是往業界的算法工程方面發展,那么兩個都要學,Hadoop要了解,Spark要熟悉。如果你是大數據研究人員,那么要精通這兩種。所以,這里的建議是,對于有志于在ML和大數據等領域發展的各位,可以按照Java - Hadoop - Spark這樣的路徑,如果你有C++和SQL的基礎,那么學習曲線將不會特別陡峭,對于spark來說,學一點Scala則會更有幫助


向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

秦安县| 白城市| 涟水县| 新闻| 怀来县| 东方市| 澄城县| 林芝县| 徐闻县| 乌拉特前旗| 安陆市| 开鲁县| 渝北区| 通河县| 遵义县| 乌拉特后旗| 宁乡县| 乌鲁木齐县| 普宁市| 福海县| 马鞍山市| 渭南市| 社会| 洪洞县| 青田县| 会泽县| 福贡县| 泊头市| 阿合奇县| 兴海县| 昭苏县| 油尖旺区| 宁陕县| 贡觉县| 宜章县| 明溪县| 图木舒克市| 临漳县| 汽车| 郧西县| 玉环县|