您好,登錄后才能下訂單哦!
中臺是“讓聽得見炮火的人召喚炮火”,面對如火如荼的中臺建設潮,只有先解釋了“數據該怎么用”的問題,才有必要進一步解答“數據怎么來”、“數據怎么存”的問題。
中臺,2019最火熱的詞匯之一。
如果把數據中臺比喻為現代企業數據管理的航空母艦,無疑現在這艘航母還是一艘孤零零的巨無霸,沒有護衛艦隊,沒有搭載作戰集群,更沒有***性核潛艇。
現在的問題是,我們建好了「中央發電站」,卻發現缺少能釋放其巨大產能的「電燈泡」。
我們空有單集群上萬臺服務器規模的算力基礎設施,僅僅只是讓報表跑得更快或者消除數據孤島?這無疑是對海量算力最大的資源浪費,市場呼喚著能把這些龐大算力釋放出來的數據應用。
什么樣的系統才能與巨大的算力相匹配?什么樣的系統才能真實有力地去解決業務實際問題?數據智能模型!
什么是數據智能模型?他和傳統的信息化系統有什么區別?智能又體現在什么地方?
這里需要解釋下「信息化系統」和「智能化系統」的區別,「信息化系統」本質是編輯數據庫,一個系統如果核心是靠人工決策并且依賴大量人工交互來完成任務,那么就是信息化系統。而「智能化系統」則是依靠機器高度自動化完成“數據清洗—問題定位—業務決策”等一系列操作,以任務為輸入,以處理結果為輸出。
按照這個標準,市面上形形×××的智能系統都只是借智能之名魚目混珠。
智能化系統的智能程度可以參考下圖,L0向L4意味著智能化程度越高。
對標企業管理發展的四個階段,企業必須完成整個信息化工程L0至L4的改造升級。
企業的信息建設其實是企業管理升級的投影。當然這么說還是比較抽象。
拿商品運營中最基礎的貨品調補環節舉例。
1、L0階段:在企業早期階段,區域門店的補貨、門店間的調貨,不是一個非常嚴重的問題,一個人列幾張表格,花點心思就能搞定,僅僅做到標準化管理即可;
2、L1~2階段:隨著規模的擴大,當門店達到上百家,這時候就必須組建商品部門,去協調上百家門店之間的商品短缺和區域間不平衡的情況,這里就需要流程化管理。半自動化或者自動化管理系統可以輔助商品運營人員形成企業獨有的運營風格和策略;
3、L3~4階段:數據的傳輸效率會隨著節點(人員)的增加邊際遞減,隨著規模的進一步擴大,想依靠加人頭來管好線下的整盤貨,就變成了一個人員臃腫、效率低下、成效難以衡量的問題,期間伴隨著高昂的人員培訓成本和核心員工離職的風險。智能化系統也就應運而生。
我們近期服務的某集團正處于流程化管理向自動化管理過渡階段,商品運營部門人員多達20余人,這20余人平均每周需要投入四天時間去處理商品的補貨、調貨數據。
這20余人訓練有素,需要人肉去判斷500家門店商品的盈虧狀態,在供大于求的時候優先滿足哪種類型的門店,應該滿足多少?供小于求的時候?一個熟練的投放專員在每次補調貨的時候需要同時考慮十多個衡量指標。
現在某集團預備在未來一年內開啟×××模式,門店預計擴張到4000家,一個熟練的商品專員平均培養周期最少2年。
門店擴大十倍,商品專員也相應擴大十倍?
智能調補貨系統,集采了天氣、區域、位置等外部數據,結合行業先進的調補貨經驗,上線后預計可達到:
1、采用深度學習算法,原先需要十多人協作完成的補貨數據,機器僅僅在幾分鐘內就完成了全部補貨過程,即使千余家門店的調補貨計算量也不在話下,無需辛苦招人培訓,還要隨時警惕競爭對手來挖角;
2、原本需要整個商品部反復拉扯的補貨問題,系統自動按照毛利最優解決方案,完成了全部的調度工作,預計可將商品平均周售罄率提升到60%~70%,雙周售罄率穩定提升到80%以上,區域間調撥次數降低30%以上(18年某集團僅補貨物流成本可達250萬);
3、業務人員的腦力被極大釋放,珍貴的核心員工只需管理好算法模型的優化方向和數據補充,有更多時間去思考商品本身的運營策略,商品部也由一個成本部門升級為利潤部門。
云計算浪潮降低了硬件采購的成本,直接催生了今天中臺生態的繁榮。
今日中國的中小企業可以低成本搭建自己的數據中臺,有機會從源頭就開始校正數據化建設方向,但是中臺的盛行和業務發展的需求,必然會倒逼業務前臺的升級改造。
中臺戰略之下,現行企業的方方面面其實都值得重構升級一遍。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。