您好,登錄后才能下訂單哦!
這期內容當中小編將會給大家帶來有關spark生成表格套用公式是什么,文章內容豐富且以專業的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
Index | A | B | C | D |
1 | 10 | 2 | 8 | 8 |
2 | 9 | |||
3 | 8 |
簡化業務描述后,需求為:
有表格如上,A列及第一行可以直接給出,其余空白字段要求按公式算出。
公式:
1) B[x] = A[x]-1
2) C[x] = A[x] - B[x]
3) D[x] = (C[x]+D[x-1])/2 //(上一行同列+本行前一列)/2
計算后的表格值應為:
Index | A | B | C | D |
1 | 10 | 2 | 8 | 8 |
2 | 9 | 7 | 2 | 5 |
3 | 8 | 4 | 4 | 4.5 |
代碼
import org.apache.spark.rdd.RDD import org.apache.spark.sql.types._ import org.apache.spark.sql.{Row, SparkSession} val schema = StructType( List( StructField("ID", DoubleType, true), StructField( "A", DoubleType, true), StructField( "B", DoubleType, true), StructField( "C", DoubleType, true), StructField( "D", DoubleType, true) ) ) val data1: RDD[Row] = spark.sparkContext.parallelize( Seq( Row(1.0,10.0,2.0,8.0,8.0) ) ) val df1 = spark.createDataFrame(data1, schema) df1.createOrReplaceTempView("df1") val data2: RDD[Row] = spark.sparkContext.parallelize( Seq( Row(1.0,9.0,null,null,null) ) ) val df2 = spark.createDataFrame(data2, schema) df2.createOrReplaceTempView("df2") def func_1(x: Int) = { x - 1 } def func_2(x:Int,y:Int):Int = { x - func_1(y) } def func_3(x:Int,y:Int,z:Int):Int = { (x+func_2(y,z))/2 } spark.udf.register("func_1", func_1 _) spark.udf.register("func_2", func_2 _) spark.udf.register("func_3", func_3 _) spark.sql( """ |select | df2.ID, | df2.A, | func_1(df1.D) as B, | func_2(df2.A,df1.D) as C, | func_3(df1.D,df2.A,df1.D) as D |from df2 inner join df1 on df1.ID = df2.ID | """.stripMargin).show()
上述就是小編為大家分享的spark生成表格套用公式是什么了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。