91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Redis的內存滿了怎么辦

發布時間:2021-06-24 14:24:34 來源:億速云 閱讀:139 作者:chen 欄目:編程語言

本篇內容介紹了“Redis的內存滿了怎么辦”的有關知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領大家學習一下如何處理這些情況吧!希望大家仔細閱讀,能夠學有所成!

  • Redis占用內存大小

  • Redis的內存淘汰

  • LRU算法

  • LRU在Redis中的實現

  • LFU算法

Redis占用內存大小

我們知道Redis是基于內存的key-value數據庫,因為系統的內存大小有限,所以我們在使用Redis的時候可以配置Redis能使用的最大的內存大小。

1、通過配置文件配置

通過在Redis安裝目錄下面的redis.conf配置文件中添加以下配置設置內存大小

 

//設置Redis最大占用內存大小為100M
maxmemory 100mb

redis的配置文件不一定使用的是安裝目錄下面的redis.conf文件,啟動redis服務的時候是可以傳一個參數指定redis的配置文件的

2、通過命令修改

Redis支持運行時通過命令動態修改內存大小

 

//設置Redis最大占用內存大小為100M
127.0.0.1:6379> config set maxmemory 100mb


//獲取設置的Redis能使用的最大內存大小
127.0.0.1:6379> config get maxmemory

如果不設置最大內存大小或者設置最大內存大小為0,在64位操作系統下不限制內存大小,在32位操作系統下最多使用3GB內存

Redis的內存淘汰

既然可以設置Redis最大占用內存大小,那么配置的內存就有用完的時候。那在內存用完的時候,還繼續往Redis里面添加數據不就沒內存可用了嗎?

實際上Redis定義了幾種策略用來處理這種情況:

  • noeviction(默認策略):對于寫請求不再提供服務,直接返回錯誤(DEL請求和部分特殊請求除外)

  • allkeys-lru:從所有key中使用LRU算法進行淘汰

  • volatile-lru:從設置了過期時間的key中使用LRU算法進行淘汰

  • allkeys-random:從所有key中隨機淘汰數據

  • volatile-random:從設置了過期時間的key中隨機淘汰

  • volatile-ttl:在設置了過期時間的key中,根據key的過期時間進行淘汰,越早過期的越優先被淘汰

當使用volatile-lruvolatile-randomvolatile-ttl這三種策略時,如果沒有key可以被淘汰,則和noeviction一樣返回錯誤

如何獲取及設置內存淘汰策略

獲取當前內存淘汰策略:

 

127.0.0.1:6379> config get maxmemory-policy

通過配置文件設置淘汰策略(修改redis.conf文件):

 

maxmemory-policy allkeys-lru

通過命令修改淘汰策略:

 

127.0.0.1:6379> config set maxmemory-policy allkeys-lru

LRU算法

什么是LRU?

上面說到了Redis可使用最大內存使用完了,是可以使用LRU算法進行內存淘汰的,那么什么是LRU算法呢?

LRU(Least Recently Used),即最近最少使用,是一種緩存置換算法。

 

在使用內存作為緩存的時候,緩存的大小一般是固定的。當緩存被占滿,這個時候繼續往緩存里面添加數據,就需要淘汰一部分老的數據,釋放內存空間用來存儲新的數據。

 

這個時候就可以使用LRU算法了。其核心思想是:如果一個數據在最近一段時間沒有被用到,那么將來被使用到的可能性也很小,所以就可以被淘汰掉。

使用java實現一個簡單的LRU算法

 

public class LRUCache<k, v> {
    //容量
    private int capacity;
    //當前有多少節點的統計
    private int count;
    //緩存節點
    private Map<k, node> nodeMap;
    private Node head;
    private Node tail;

    public LRUCache(int capacity) {
        if (capacity < 1) {
            throw new IllegalArgumentException(String.valueOf(capacity));
        }
        this.capacity = capacity;
        this.nodeMap = new HashMap<>();
        //初始化頭節點和尾節點,利用哨兵模式減少判斷頭結點和尾節點為空的代碼
        Node headNode = new Node(null, null);
        Node tailNode = new Node(null, null);
        headNode.next = tailNode;
        tailNode.pre = headNode;
        this.head = headNode;
        this.tail = tailNode;
    }

    public void put(k key, v value) {
        Node node = nodeMap.get(key);
        if (node == null) {
            if (count >= capacity) {
                //先移除一個節點
                removeNode();
            }
            node = new Node<>(key, value);
            //添加節點
            addNode(node);
        } else {
            //移動節點到頭節點
            moveNodeToHead(node);
        }
    }

    public Node get(k key) ,>{
        Node node = nodeMap.get(key);
        if (node != null) {
            moveNodeToHead(node);
        }
        return node;
    }

    private void removeNode() {
        Node node = tail.pre;
        //從鏈表里面移除
        removeFromList(node);
        nodeMap.remove(node.key);
        count--;
    }

    private void removeFromList(Node node),> {
        Node pre = node.pre;
        Node next = node.next;

        pre.next = next;
        next.pre = pre;

        node.next = null;
        node.pre = null;
    }

    private void addNode(Node node),> {
        //添加節點到頭部
        addToHead(node);
        nodeMap.put(node.key, node);
        count++;
    }

    private void addToHead(Node node),> {
        Node next = head.next;
        next.pre = node;
        node.next = next;
        node.pre = head;
        head.next = node;
    }

    public void moveNodeToHead(Node node),> {
        //從鏈表里面移除
        removeFromList(node);
        //添加節點到頭部
        addToHead(node);
    }

    class Node<k, v> {
        k key;
        v value;
        Node pre;
        Node next;

        public Node(k key, v value) {
            this.key = key;
            this.value = value;
        }
    }
}
,>,>,>,>,>

上面這段代碼實現了一個簡單的LUR算法,代碼很簡單,也加了注釋,仔細看一下很容易就看懂。

LRU在Redis中的實現

近似LRU算法

Redis使用的是近似LRU算法,它跟常規的LRU算法還不太一樣。

近似LRU算法通過隨機采樣法淘汰數據,每次隨機出5(默認)個key,從里面淘汰掉最近最少使用的key。

可以通過maxmemory-samples參數修改采樣數量:例:maxmemory-samples 10 maxmenory-samples配置的越大,淘汰的結果越接近于嚴格的LRU算法

Redis為了實現近似LRU算法,給每個key增加了一個額外增加了一個24bit的字段,用來存儲該key最后一次被訪問的時間。

Redis3.0對近似LRU的優化

Redis3.0對近似LRU算法進行了一些優化。新算法會維護一個候選池(大小為16),池中的數據根據訪問時間進行排序,第一次隨機選取的key都會放入池中

隨后每次隨機選取的key只有在訪問時間小于池中最小的時間才會放入池中,直到候選池被放滿。

當放滿后,如果有新的key需要放入,則將池中最后訪問時間最大(最近被訪問)的移除。

當需要淘汰的時候,則直接從池中選取最近訪問時間最小(最久沒被訪問)的key淘汰掉就行。

LRU算法的對比

我們可以通過一個實驗對比各LRU算法的準確率,先往Redis里面添加一定數量的數據n,使Redis可用內存用完,再往Redis里面添加n/2的新數據,這個時候就需要淘汰掉一部分的數據

如果按照嚴格的LRU算法,應該淘汰掉的是最先加入的n/2的數據。

生成如下各LRU算法的對比圖(圖片來源):

Redis的內存滿了怎么辦

你可以看到圖中有三種不同顏色的點:

  • 淺灰色是被淘汰的數據

  • 灰色是沒有被淘汰掉的老數據

  • 綠色是新加入的數據

我們能看到Redis3.0采樣數是10生成的圖最接近于嚴格的LRU。而同樣使用5個采樣數,Redis3.0也要優于Redis2.8。

LFU算法

LFU算法是Redis4.0里面新加的一種淘汰策略。它的全稱是Least Frequently Used

它的核心思想是根據key的最近被訪問的頻率進行淘汰,很少被訪問的優先被淘汰,被訪問的多的則被留下來。

LFU算法能更好的表示一個key被訪問的熱度。假如你使用的是LRU算法,一個key很久沒有被訪問到,只剛剛是偶爾被訪問了一次,那么它就被認為是熱點數據,不會被淘汰,而有些key將來是很有可能被訪問到的則被淘汰了。

如果使用LFU算法則不會出現這種情況,因為使用一次并不會使一個key成為熱點數據。

LFU一共有兩種策略:

  • volatile-lfu:在設置了過期時間的key中使用LFU算法淘汰key

  • allkeys-lfu:在所有的key中使用LFU算法淘汰數據

     

設置使用這兩種淘汰策略跟前面講的一樣,不過要注意的一點是這兩周策略只能在Redis4.0及以上設置,如果在Redis4.0以下設置會報錯

“Redis的內存滿了怎么辦”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業相關的知識可以關注億速云網站,小編將為大家輸出更多高質量的實用文章!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

广宗县| 鹤山市| 大荔县| 西畴县| 巴彦县| 曲阳县| 云南省| 方城县| 高尔夫| 柘城县| 航空| 湘潭县| 阿克陶县| 甘肃省| 南城县| 盐津县| 通州区| 满洲里市| 保山市| 织金县| 正宁县| 彩票| 景宁| 汝阳县| 福建省| 蕉岭县| 湛江市| 安庆市| 鞍山市| 花莲县| 新平| 娄底市| 招远市| 灵武市| 临沂市| 通化县| 永仁县| 长乐市| 昌宁县| 奉化市| 新邵县|