91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

server的啟動流程是什么

發布時間:2021-10-20 16:07:46 來源:億速云 閱讀:138 作者:iii 欄目:編程語言

這篇文章主要講解了“server的啟動流程是什么”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“server的啟動流程是什么”吧!

1. 一個NettyServer的demo

  要想深入理解某個框架,一般還是要以demo作為一個抓手點的。以下,我們可以看到一個簡單的nettyServer的創建過程,即netty的quick start樣例吧。

@Slf4j
public class NettyServerHelloApplication {

    /**
     * 一個server的樣例
     */
    public static void main(String[] args) throws Exception {
        // 1. 創建對應的EventLoop線程池備用, 分bossGroup和workerGroup
        EventLoopGroup bossGroup = new NioEventLoopGroup(1);
        EventLoopGroup workerGroup = new NioEventLoopGroup(4);
        try {
            // 2. 創建netty對應的入口核心類 ServerBootstrap
            ServerBootstrap b = new ServerBootstrap();
            // 3. 設置server的各項參數,以及應用處理器
            b.group(bossGroup, workerGroup)
                    .channel(NioServerSocketChannel.class)
                    .option(ChannelOption.SO_BACKLOG, 100) // 設置tcp協議的請求等待隊列
                    .childHandler(new ChannelInitializer<SocketChannel>() {
                        @Override
                        public void initChannel(SocketChannel ch) throws Exception {
                            // 3.2. 最重要的,將各channelHandler綁定到netty的上下文中(暫且這么說吧)
                            ChannelPipeline p = ch.pipeline();
                            p.addLast(new LoggingHandler(LogLevel.INFO));
                            p.addLast("encoder", new MessageEncoder());
                            p.addLast("decoder", new MessageDecoder());
                            p.addLast(new EchoServerHandler());
                        }
                    });

            // 4. 綁定tcp端口開啟服務端監聽, sync() 保證執行完成所有任務
            ChannelFuture f = b.bind(ServerConstant.PORT).sync();

            // 5. 等待關閉信號,讓業務線程去服務業務了
            f.channel().closeFuture().sync();
        } finally {
            // 6. 收到關閉信號后,優雅關閉server的線程池,保護應用
            bossGroup.shutdownGracefully();
            workerGroup.shutdownGracefully();
        }
    }

}

 以上,就是一個簡版的nettyServer的整個框架了,這也基本上整個nettyServer的編程范式了。主要即分為這么幾步:

    1. 創建對應的EventLoop線程池備用, 分bossGroup和workerGroup;
    2. 創建netty對應的入口核心類 ServerBootstrap;
    3. 設置server的各項參數,以及應用處理器(必備的channelHandler業務接入過程);
    4. 綁定tcp端口開啟服務端監聽;
    5. 等待關閉信號,讓業務線程去服務業務了;
    6. 收到關閉信號后,優雅關閉server的線程池,保護應用;

  事實上,如果我們直接基于jdk提供的ServerSocketChannel是否也差不了多少呢?是的,至少表面看起來是的,但我們要處理許多的異常情況,且可能面對變化繁多的業務類型。又該如何呢?

  畢竟一個框架的成功,絕非偶然。下面我們就這幾個過程來看看netty都是如何處理的吧!

2. EventLoop 的創建

  EventLoop 直譯為事件循環,但在這里我們也可以理解為一個線程池,因為所有的事件都是提交給其處理的。那么,它倒底是個什么樣的循環呢?

  首先來看下其類繼承情況: 

server的啟動流程是什么

  從類圖可以看出,EventLoop也是一個executor或者說線程池的實現,它們也許有相通之處。

 // 調用方式如下
    EventLoopGroup bossGroup = new NioEventLoopGroup(1);
    EventLoopGroup workerGroup = new NioEventLoopGroup(4);
    // io.netty.channel.nio.NioEventLoopGroup#NioEventLoopGroup(int, java.util.concurrent.ThreadFactory)
    /**
     * Create a new instance using the specified number of threads, the given {@link ThreadFactory} and the
     * {@link SelectorProvider} which is returned by {@link SelectorProvider#provider()}.
     */
    public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory) {
        this(nThreads, threadFactory, SelectorProvider.provider());
    }    
    public NioEventLoopGroup(
            int nThreads, Executor executor, final SelectorProvider selectorProvider) {
        this(nThreads, executor, selectorProvider, DefaultSelectStrategyFactory.INSTANCE);
    }
    
    public NioEventLoopGroup(int nThreads, Executor executor, final SelectorProvider selectorProvider,
                             final SelectStrategyFactory selectStrategyFactory) {
        super(nThreads, executor, selectorProvider, selectStrategyFactory, RejectedExecutionHandlers.reject());
    }
    // io.netty.channel.MultithreadEventLoopGroup#MultithreadEventLoopGroup(int, java.util.concurrent.Executor, java.lang.Object...)
    protected MultithreadEventLoopGroup(int nThreads, Executor executor, Object... args) {
        // 默認線程是 cpu * 2
        super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, args);
    }
    // io.netty.util.concurrent.MultithreadEventExecutorGroup#MultithreadEventExecutorGroup(int, java.util.concurrent.Executor, java.lang.Object...)
    /**
     * Create a new instance.
     *
     * @param nThreads          the number of threads that will be used by this instance.
     * @param executor          the Executor to use, or {@code null} if the default should be used.
     * @param args              arguments which will passed to each {@link #newChild(Executor, Object...)} call
     */
    protected MultithreadEventExecutorGroup(int nThreads, Executor executor, Object... args) {
        this(nThreads, executor, DefaultEventExecutorChooserFactory.INSTANCE, args);
    }

    // io.netty.util.concurrent.MultithreadEventExecutorGroup#MultithreadEventExecutorGroup(int, java.util.concurrent.Executor, io.netty.util.concurrent.EventExecutorChooserFactory, java.lang.Object...)
    /**
     * Create a new instance.
     *
     * @param nThreads          the number of threads that will be used by this instance.
     * @param executor          the Executor to use, or {@code null} if the default should be used.
     * @param chooserFactory    the {@link EventExecutorChooserFactory} to use.
     * @param args              arguments which will passed to each {@link #newChild(Executor, Object...)} call
     */
    protected MultithreadEventExecutorGroup(int nThreads, Executor executor,
                                            EventExecutorChooserFactory chooserFactory, Object... args) {
        if (nThreads <= 0) {
            throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads));
        }

        // 創建一個執行器,該執行器每提交一個任務,就創建一個線程來運行,即并沒有隊列的概念
        if (executor == null) {
            executor = new ThreadPerTaskExecutor(newDefaultThreadFactory());
        }
        // 使用一個數組來保存整個可用的線程池
        children = new EventExecutor[nThreads];

        for (int i = 0; i < nThreads; i ++) {
            boolean success = false;
            try {
                // 為每個child創建一個線程運行, 該方法由子類實現
                children[i] = newChild(executor, args);
                success = true;
            } catch (Exception e) {
                // TODO: Think about if this is a good exception type
                throw new IllegalStateException("failed to create a child event loop", e);
            } finally {
                if (!success) {
                    // 如果創建失敗,則把已經創建好的線程池關閉掉
                    // 不過值得注意的是,當某個線程池創建失敗后,并沒有立即停止后續創建工作,即無 return 操作,這是為啥?
                    // 實際上,發生異常時,Exeception 已經被拋出,此處無需關注
                    for (int j = 0; j < i; j ++) {
                        children[j].shutdownGracefully();
                    }

                    for (int j = 0; j < i; j ++) {
                        EventExecutor e = children[j];
                        try {
                            while (!e.isTerminated()) {
                                e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);
                            }
                        } catch (InterruptedException interrupted) {
                            // Let the caller handle the interruption.
                            Thread.currentThread().interrupt();
                            break;
                        }
                    }
                }
            }
        }
        // 創建選擇器,猜測是做負載均衡時使用
        // 此處的chooser默認是 DefaultEventExecutorChooserFactory
        chooser = chooserFactory.newChooser(children);

        final FutureListener<Object> terminationListener = new FutureListener<Object>() {
            @Override
            public void operationComplete(Future<Object> future) throws Exception {
                if (terminatedChildren.incrementAndGet() == children.length) {
                    terminationFuture.setSuccess(null);
                }
            }
        };

        for (EventExecutor e: children) {
            e.terminationFuture().addListener(terminationListener);
        }

        Set<EventExecutor> childrenSet = new LinkedHashSet<EventExecutor>(children.length);
        Collections.addAll(childrenSet, children);
        readonlyChildren = Collections.unmodifiableSet(childrenSet);
    }

    // io.netty.channel.nio.NioEventLoopGroup#newChild
    @Override
    protected EventLoop newChild(Executor executor, Object... args) throws Exception {
        // 注意此處的參數類型是由外部進行保證的,在此直接做強轉操作
        return new NioEventLoop(this, executor, (SelectorProvider) args[0],
            ((SelectStrategyFactory) args[1]).newSelectStrategy(), (RejectedExecutionHandler) args[2]);
    }
    
    // io.netty.channel.nio.NioEventLoop#NioEventLoop
    NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider,
                 SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler) {
        // 此構造器會做很多事,比如創建隊列,開啟nio selector...
        super(parent, executor, false, DEFAULT_MAX_PENDING_TASKS, rejectedExecutionHandler);
        if (selectorProvider == null) {
            throw new NullPointerException("selectorProvider");
        }
        if (strategy == null) {
            throw new NullPointerException("selectStrategy");
        }
        provider = selectorProvider;
        final SelectorTuple selectorTuple = openSelector();
        selector = selectorTuple.selector;
        unwrappedSelector = selectorTuple.unwrappedSelector;
        selectStrategy = strategy;
    }


    // io.netty.util.concurrent.DefaultEventExecutorChooserFactory#newChooser
    @SuppressWarnings("unchecked")
    @Override
    public EventExecutorChooser newChooser(EventExecutor[] executors) {
        // 如: 1,2,4,8... 都會創建 PowerOfTwoEventExecutorChooser
        if (isPowerOfTwo(executors.length)) {
            return new PowerOfTwoEventExecutorChooser(executors);
        } else {
            return new GenericEventExecutorChooser(executors);
        }
    }

    // io.netty.util.concurrent.DefaultPromise#addListener
    @Override
    public Promise<V> addListener(GenericFutureListener<? extends Future<? super V>> listener) {
        checkNotNull(listener, "listener");

        synchronized (this) {
            addListener0(listener);
        }

        if (isDone()) {
            notifyListeners();
        }

        return this;
    }

以上,就是 NioEventLoopGroup 的創建過程了. 本質上其就是一個個的單獨的線程組成的數組列表, 等待被調用.

3. ServerBootstrap 的創建

  ServerBootstrap是Netty的一個服務端核心入口類, 它可以很快速的創建一個穩定的netty服務.

  ServerBootstrap 的類圖如下: 

  還是非常純粹的啊!其中有意思是的, ServerBootstrap繼承自 AbstractBootstrap, 而這個 AbstractBootstrap 是一個自依賴的抽象類: AbstractBootstrap<B extends AbstractBootstrap<B, C>, C extends Channel> , 這樣,即父類可以直接返回子類的信息了。

  其默認構造方法為空,所以所以參數都使用默認值, 因為還有后續的參數設置過程,接下來,我們看看其一些關鍵參數的設置: 

// 1. channel的設定
    // io.netty.bootstrap.AbstractBootstrap#channel
    /**
     * The {@link Class} which is used to create {@link Channel} instances from.
     * You either use this or {@link #channelFactory(io.netty.channel.ChannelFactory)} if your
     * {@link Channel} implementation has no no-args constructor.
     */
    public B channel(Class<? extends C> channelClass) {
        if (channelClass == null) {
            throw new NullPointerException("channelClass");
        }
        // 默認使用構造器反射的方式創建 channel
        return channelFactory(new ReflectiveChannelFactory<C>(channelClass));
    }
    // io.netty.bootstrap.AbstractBootstrap#channelFactory(io.netty.channel.ChannelFactory<? extends C>)
    /**
     * {@link io.netty.channel.ChannelFactory} which is used to create {@link Channel} instances from
     * when calling {@link #bind()}. This method is usually only used if {@link #channel(Class)}
     * is not working for you because of some more complex needs. If your {@link Channel} implementation
     * has a no-args constructor, its highly recommend to just use {@link #channel(Class)} for
     * simplify your code.
     */
    @SuppressWarnings({ "unchecked", "deprecation" })
    public B channelFactory(io.netty.channel.ChannelFactory<? extends C> channelFactory) {
        return channelFactory((ChannelFactory<C>) channelFactory);
    }
    // io.netty.bootstrap.AbstractBootstrap#channelFactory(io.netty.bootstrap.ChannelFactory<? extends C>)
    /**
     * @deprecated Use {@link #channelFactory(io.netty.channel.ChannelFactory)} instead.
     */
    @Deprecated
    public B channelFactory(ChannelFactory<? extends C> channelFactory) {
        if (channelFactory == null) {
            throw new NullPointerException("channelFactory");
        }
        if (this.channelFactory != null) {
            throw new IllegalStateException("channelFactory set already");
        }

        this.channelFactory = channelFactory;
        return self();
    }
    @SuppressWarnings("unchecked")
    private B self() {
        return (B) this;
    }

    // 2. option 參數選項設置, 它會承包各種特殊配置的設置, 是一個通用配置項設置的入口 
    /**
     * Allow to specify a {@link ChannelOption} which is used for the {@link Channel} instances once they got
     * created. Use a value of {@code null} to remove a previous set {@link ChannelOption}.
     */
    public <T> B option(ChannelOption<T> option, T value) {
        if (option == null) {
            throw new NullPointerException("option");
        }
        // options 是一個 new LinkedHashMap<ChannelOption<?>, Object>(), 即非線程安全的容器, 所以設置值時要求使用 synchronized 保證線程安全
        // value 為null時代表要將該選項設置刪除, 如果key相同,后面的配置將會覆蓋前面的配置
        if (value == null) {
            synchronized (options) {
                options.remove(option);
            }
        } else {
            synchronized (options) {
                options.put(option, value);
            }
        }
        return self();
    }
    
    // 3. childHandler 添加channelHandler, 這是一個最重要的一個方法, 它會影響到后面的業務處理統籌
    // 調用該方法僅將 channelHandler的上下文加入進來, 實際還未進行真正的添加操作 .childHandler(new ChannelInitializer<SocketChannel>() {
    ServerBootstrap b = new ServerBootstrap();
    b.group(bossGroup, workerGroup)
            .channel(NioServerSocketChannel.class)
            .option(ChannelOption.SO_BACKLOG, 100) // 設置tcp協議的請求等待隊列
            .childHandler(new ChannelInitializer<SocketChannel>() {
                @Override
                public void initChannel(SocketChannel ch) throws Exception {
                    ChannelPipeline p = ch.pipeline();
                    p.addLast(new LoggingHandler(LogLevel.INFO));
                    p.addLast("encoder", new MessageEncoder());
                    p.addLast("decoder", new MessageDecoder());
                    p.addLast(new EchoServerHandler());
                }
            });
    /**
     * Set the {@link ChannelHandler} which is used to serve the request for the {@link Channel}'s.
     */
    public ServerBootstrap childHandler(ChannelHandler childHandler) {
        if (childHandler == null) {
            throw new NullPointerException("childHandler");
        }
        // 僅將 channelHandler 綁定到netty的上下文中
        this.childHandler = childHandler;
        return this;
    }
    
    // 4. bossGroup, workGroup 如何被分配 ?
    /**
     * Set the {@link EventLoopGroup} for the parent (acceptor) and the child (client). These
     * {@link EventLoopGroup}'s are used to handle all the events and IO for {@link ServerChannel} and
     * {@link Channel}'s.
     */
    public ServerBootstrap group(EventLoopGroup parentGroup, EventLoopGroup childGroup) {
        // parentGroup 是給acceptor使用的, 主要用于對socket連接的接入,所以一般一個線程也夠了
        super.group(parentGroup);
        if (childGroup == null) {
            throw new NullPointerException("childGroup");
        }
        if (this.childGroup != null) {
            throw new IllegalStateException("childGroup set already");
        }
        // childGroup 主要用于接入后的socket的事件的處理,一般要求數量較多,視業務屬性決定
        this.childGroup = childGroup;
        return this;
    }

bind 綁定tcp端口,這個是真正觸發server初始化的一步,工作量比較大,我們另開一段講解。

4. nettyServer 的初始化

  前面所有工作都是在準備, 都并未體現在外部, 而 bind 則會是開啟一個對外服務, 對外可見, 真正啟動server.

// io.netty.bootstrap.AbstractBootstrap#bind(int)
    /**
     * Create a new {@link Channel} and bind it.
     */
    public ChannelFuture bind(int inetPort) {
        return bind(new InetSocketAddress(inetPort));
    }
    // io.netty.bootstrap.AbstractBootstrap#bind(java.net.SocketAddress)
    /**
     * Create a new {@link Channel} and bind it.
     */
    public ChannelFuture bind(SocketAddress localAddress) {
        // 先驗證各種參數是否設置完整, 如線程池是否設置, channelHandler 是否設置...
        validate();
        if (localAddress == null) {
            throw new NullPointerException("localAddress");
        }
        // 綁定tcp端口
        return doBind(localAddress);
    }
    private ChannelFuture doBind(final SocketAddress localAddress) {
        // 1. 創建一些channel使用, 與eventloop綁定, 統一管理嘛
        final ChannelFuture regFuture = initAndRegister();
        final Channel channel = regFuture.channel();
        if (regFuture.cause() != null) {
            return regFuture;
        }

        if (regFuture.isDone()) {
            // At this point we know that the registration was complete and successful.
            ChannelPromise promise = channel.newPromise();
            // 2. 注冊成功之后, 開始實際的 bind() 操作, 實際就是調用 channel.bind()
            // doBind0() 是一個異步的操作,所以使用的一個 promise 作為結果驅動
            doBind0(regFuture, channel, localAddress, promise);
            return promise;
        } else {
            // Registration future is almost always fulfilled already, but just in case it's not.
            final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
            regFuture.addListener(new ChannelFutureListener() {
                @Override
                public void operationComplete(ChannelFuture future) throws Exception {
                    Throwable cause = future.cause();
                    if (cause != null) {
                        // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an
                        // IllegalStateException once we try to access the EventLoop of the Channel.
                        promise.setFailure(cause);
                    } else {
                        // Registration was successful, so set the correct executor to use.
                        // See https://github.com/netty/netty/issues/2586
                        promise.registered();

                        doBind0(regFuture, channel, localAddress, promise);
                    }
                }
            });
            return promise;
        }
    }

所以,從整體來說,bind()過程分兩大步走:1. 初始化channel,與nio關聯; 2. 落實channel和本地端口的綁定工作; 我們來細看下:

4.1 初始化channel

  初始化channel, 并注冊到 selector上, 這個操作實際上非常重要。

 // 以下我們先看下執行框架
    // io.netty.bootstrap.AbstractBootstrap#initAndRegister
    final ChannelFuture initAndRegister() {
        Channel channel = null;
        try {
            // 即根據前面設置的channel 使用反射創建一個實例出來
            // 即此處將會實例化出一個 ServerSocketChannel 出來
            // 所以如果你想用jdk的nio實現,則設置channel時使用 NioServerSocketChannel.class即可, 而你想使用其他更優化的實現時比如EpollServerSocketChannel時,改變一下即可
            // 而此處的 channelFactory 就是一個反射的實現 ReflectiveChannelFactory, 它會調用如上channel的無參構造方法實例化
            // 重點工作就需要在這個無參構造器中完成,我們接下來看看
            channel = channelFactory.newChannel();
            // 初始化channel的一些公共參數, 相當于做一些屬性的繼承, 因為后續它將不再依賴 ServerBootstrap, 它需要有獨立自主能力
            init(channel);
        } catch (Throwable t) {
            if (channel != null) {
                // channel can be null if newChannel crashed (eg SocketException("too many open files"))
                channel.unsafe().closeForcibly();
                // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
                return new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t);
            }
            // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
            return new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t);
        }
        // 注冊創建好的 channel 到eventLoop中
        ChannelFuture regFuture = config().group().register(channel);
        if (regFuture.cause() != null) {
            if (channel.isRegistered()) {
                channel.close();
            } else {
                channel.unsafe().closeForcibly();
            }
        }

        // If we are here and the promise is not failed, it's one of the following cases:
        // 1) If we attempted registration from the event loop, the registration has been completed at this point.
        //    i.e. It's safe to attempt bind() or connect() now because the channel has been registered.
        // 2) If we attempted registration from the other thread, the registration request has been successfully
        //    added to the event loop's task queue for later execution.
        //    i.e. It's safe to attempt bind() or connect() now:
        //         because bind() or connect() will be executed *after* the scheduled registration task is executed
        //         because register(), bind(), and connect() are all bound to the same thread.

        return regFuture;
    }
    
    // 1. 先看看 NioServerSocketChannel 的構造過程
    // io.netty.channel.socket.nio.NioServerSocketChannel#NioServerSocketChannel()
    /**
     * Create a new instance
     */
    public NioServerSocketChannel() {
        // newSocket 簡單說就是創建一個本地socket, api調用: SelectorProvider.provider().openServerSocketChannel()
        // 但此時本 socket 并未和任何端口綁定
        this(newSocket(DEFAULT_SELECTOR_PROVIDER));
    }
    /**
     * Create a new instance using the given {@link ServerSocketChannel}.
     */
    public NioServerSocketChannel(ServerSocketChannel channel) {
        // 注冊 OP_ACCEPT 事件
        super(null, channel, SelectionKey.OP_ACCEPT);
        // 此處的 javaChannel() 實際就是 channel, 這樣調用只是為統一吧
        // 創建一個新的 socket 傳入 NioServerSocketChannelConfig 中
        // 主要用于一些 RecvByteBufAllocator 的設置,及channel的保存
        config = new NioServerSocketChannelConfig(this, javaChannel().socket());
    }
    // io.netty.channel.nio.AbstractNioChannel#AbstractNioChannel
    /**
     * Create a new instance
     *
     * @param parent            the parent {@link Channel} by which this instance was created. May be {@code null}
     * @param ch                the underlying {@link SelectableChannel} on which it operates
     * @param readInterestOp    the ops to set to receive data from the {@link SelectableChannel}
     */
    protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
        // 先讓父類初始化必要的上下文
        super(parent);
        // 保留 channel 信息,并設置非阻塞標識
        this.ch = ch;
        this.readInterestOp = readInterestOp;
        try {
            ch.configureBlocking(false);
        } catch (IOException e) {
            try {
                ch.close();
            } catch (IOException e2) {
                if (logger.isWarnEnabled()) {
                    logger.warn(
                            "Failed to close a partially initialized socket.", e2);
                }
            }

            throw new ChannelException("Failed to enter non-blocking mode.", e);
        }
    }
    // io.netty.channel.AbstractChannel#AbstractChannel(io.netty.channel.Channel)
    /**
     * Creates a new instance.
     *
     * @param parent
     *        the parent of this channel. {@code null} if there's no parent.
     */
    protected AbstractChannel(Channel parent) {
        // 初始化上下文
        this.parent = parent;
        // DefaultChannelId
        id = newId();
        // NioMessageUnsafe
        unsafe = newUnsafe();
        // new DefaultChannelPipeline(this); 
        // 比較重要,將會初始化 head, tail 節點
        pipeline = newChannelPipeline();
    }
    // io.netty.channel.DefaultChannelPipeline#DefaultChannelPipeline
    protected DefaultChannelPipeline(Channel channel) {
        this.channel = ObjectUtil.checkNotNull(channel, "channel");
        succeededFuture = new SucceededChannelFuture(channel, null);
        voidPromise =  new VoidChannelPromise(channel, true);
        // 初始化 head, tail
        tail = new TailContext(this);
        head = new HeadContext(this);
        // 構成雙向鏈表
        head.next = tail;
        tail.prev = head;
    }



    // 2. 初始化channel, 有個最重要的動作是將 Acceptor 接入到 pipeline 中
    // io.netty.bootstrap.ServerBootstrap#init
    @Override
    void init(Channel channel) throws Exception {
        final Map<ChannelOption<?>, Object> options = options0();
        // 根據前面的設置, 將各種屬性copy過來, 放到 config 字段中
        // 同樣, 因為 options 和 attrs 都不是線程安全的, 所以都要上鎖操作
        synchronized (options) {
            setChannelOptions(channel, options, logger);
        }

        final Map<AttributeKey<?>, Object> attrs = attrs0();
        synchronized (attrs) {
            for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {
                @SuppressWarnings("unchecked")
                AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();
                channel.attr(key).set(e.getValue());
            }
        }
        // 此處的pipeline, 就是在 NioServerSocketChannel 中初始化好head,tail的pipeline
        ChannelPipeline p = channel.pipeline();
        // childGroup 實際就是外部的 workGroup
        final EventLoopGroup currentChildGroup = childGroup;
        final ChannelHandler currentChildHandler = childHandler;
        final Entry<ChannelOption<?>, Object>[] currentChildOptions;
        final Entry<AttributeKey<?>, Object>[] currentChildAttrs;
        synchronized (childOptions) {
            currentChildOptions = childOptions.entrySet().toArray(newOptionArray(childOptions.size()));
        }
        synchronized (childAttrs) {
            currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(childAttrs.size()));
        }
        // 這個就比較重要了, 關聯 ServerBootstrapAcceptor
        // 主動添加一個 initializer, 它將作為第一個被調用的 channelInitializer 存在 
        // 而 channelInitializer 只會被調用一次
        p.addLast(new ChannelInitializer<Channel>() {
            @Override
            public void initChannel(final Channel ch) throws Exception {
                final ChannelPipeline pipeline = ch.pipeline();
                ChannelHandler handler = config.handler();
                if (handler != null) {
                    pipeline.addLast(handler);
                }

                ch.eventLoop().execute(new Runnable() {
                    @Override
                    public void run() {
                        // 添加 Acceptor 到 pipeline 中, 形成一個 head -> ServerBootstrapAcceptor -> tail 的pipeline
                        pipeline.addLast(new ServerBootstrapAcceptor(
                                ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
                    }
                });
            }
        });
        // 此操作過后,當前pipeline中,就只有此一handler
    }
4.2 handler的添加過程

  addLast() 看起來只是一個添加元素的過程, 總體來說就是一個雙向鏈表的添加, 但也蠻有意思的, 有興趣可以戳開詳情看看.

// io.netty.channel.ChannelHandler
    @Override
    public final ChannelPipeline addLast(ChannelHandler... handlers) {
        return addLast(null, handlers);
    }
    // io.netty.channel.DefaultChannelPipeline#addLast(io.netty.util.concurrent.EventExecutorGroup, io.netty.channel.ChannelHandler...)
    @Override
    public final ChannelPipeline addLast(EventExecutorGroup executor, ChannelHandler... handlers) {
        if (handlers == null) {
            throw new NullPointerException("handlers");
        }
        // 支持同時添加多個 handler
        for (ChannelHandler h: handlers) {
            if (h == null) {
                break;
            }
            addLast(executor, null, h);
        }

        return this;
    }
    // io.netty.channel.DefaultChannelPipeline#addLast(io.netty.util.concurrent.EventExecutorGroup, java.lang.String, io.netty.channel.ChannelHandler)
    @Override
    public final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) {
        final AbstractChannelHandlerContext newCtx;
        synchronized (this) {
            // 重復性檢查 @Shareable 參數使用
            checkMultiplicity(handler);
            // 生成一個新的上下文, filterName()將會生成一個唯一的名稱, 如 ServerBootstrap$1#0
            newCtx = newContext(group, filterName(name, handler), handler);
            // 將當前ctx添加到鏈表中
            addLast0(newCtx);

            // If the registered is false it means that the channel was not registered on an eventloop yet.
            // In this case we add the context to the pipeline and add a task that will call
            // ChannelHandler.handlerAdded(...) once the channel is registered.
            if (!registered) {
                newCtx.setAddPending();
                // 未注冊情況下, 不會進行下一步了
                callHandlerCallbackLater(newCtx, true);
                return this;
            }
            // 而已注冊情況下, 則會使用 executor 提交callHandlerAdded0, 即調用 pipeline 的頭節點
            EventExecutor executor = newCtx.executor();
            if (!executor.inEventLoop()) {
                newCtx.setAddPending();
                executor.execute(new Runnable() {
                    @Override
                    public void run() {
                        callHandlerAdded0(newCtx);
                    }
                });
                return this;
            }
        }
        callHandlerAdded0(newCtx);
        return this;
    }
    private AbstractChannelHandlerContext newContext(EventExecutorGroup group, String name, ChannelHandler handler) {
        return new DefaultChannelHandlerContext(this, childExecutor(group), name, handler);
    }
    private void addLast0(AbstractChannelHandlerContext newCtx) {
        // 一個雙向鏈表保存上下文
        AbstractChannelHandlerContext prev = tail.prev;
        newCtx.prev = prev;
        newCtx.next = tail;
        prev.next = newCtx;
        tail.prev = newCtx;
    }
    // 添加ctx到隊列尾部
    private void callHandlerCallbackLater(AbstractChannelHandlerContext ctx, boolean added) {
        assert !registered;

        PendingHandlerCallback task = added ? new PendingHandlerAddedTask(ctx) : new PendingHandlerRemovedTask(ctx);
        PendingHandlerCallback pending = pendingHandlerCallbackHead;
        if (pending == null) {
            pendingHandlerCallbackHead = task;
        } else {
            // Find the tail of the linked-list.
            while (pending.next != null) {
                pending = pending.next;
            }
            pending.next = task;
        }
    }
    // 對每一次添加 handler, 則都會產生一個事件, 通知現有的handler, handlerAdded()
    private void callHandlerAdded0(final AbstractChannelHandlerContext ctx) {
        try {
            // We must call setAddComplete before calling handlerAdded. Otherwise if the handlerAdded method generates
            // any pipeline events ctx.handler() will miss them because the state will not allow it.
            ctx.setAddComplete();
            ctx.handler().handlerAdded(ctx);
        } catch (Throwable t) {
            boolean removed = false;
            try {
                remove0(ctx);
                try {
                    ctx.handler().handlerRemoved(ctx);
                } finally {
                    ctx.setRemoved();
                }
                removed = true;
            } catch (Throwable t2) {
                if (logger.isWarnEnabled()) {
                    logger.warn("Failed to remove a handler: " + ctx.name(), t2);
                }
            }

            if (removed) {
                fireExceptionCaught(new ChannelPipelineException(
                        ctx.handler().getClass().getName() +
                        ".handlerAdded() has thrown an exception; removed.", t));
            } else {
                fireExceptionCaught(new ChannelPipelineException(
                        ctx.handler().getClass().getName() +
                        ".handlerAdded() has thrown an exception; also failed to remove.", t));
            }
        }
    }
4.3 注冊channel,綁定eventloop線程

  經過前面兩步, channel已經創建好和初始化好了, 但還沒有看到 eventLoop 的影子. 實際上eventloop和channel間就差一個注冊了.

  也就是前面看到的 ChannelFuture regFuture = config().group().register(channel); 此處的group 即是 bossGroup.

 // io.netty.channel.MultithreadEventLoopGroup#register(io.netty.channel.Channel)
    @Override
    public ChannelFuture register(Channel channel) {
        // next() 相當于是一個負載均衡器, 會選擇出一個合適的 eventloop 出來, 默認是round-robin
        return next().register(channel);
    }
    // io.netty.channel.MultithreadEventLoopGroup#next
    @Override
    public EventLoop next() {
        return (EventLoop) super.next();
    }
    // io.netty.util.concurrent.MultithreadEventExecutorGroup#next
    @Override
    public EventExecutor next() {
        // 使用前面創建的 PowerOfTwoEventExecutorChooser 進行調用 
        // 默認實現為輪詢
        return chooser.next();
    }
        // io.netty.util.concurrent.DefaultEventExecutorChooserFactory.PowerOfTwoEventExecutorChooser#next
        @Override
        public EventExecutor next() {
            return executors[idx.getAndIncrement() & executors.length - 1];
        }
        
    // io.netty.channel.SingleThreadEventLoop#register(io.netty.channel.Channel)    
    @Override
    public ChannelFuture register(Channel channel) {
        // 使用 DefaultChannelPromise 封裝channel, 再注冊到 eventloop 中
        return register(new DefaultChannelPromise(channel, this));
    }
    @Override
    public ChannelFuture register(final ChannelPromise promise) {
        ObjectUtil.checkNotNull(promise, "promise");
        // NioMessageUnsafe
        promise.channel().unsafe().register(this, promise);
        return promise;
    }

        // io.netty.channel.AbstractChannel.AbstractUnsafe#register
        @Override
        public final void register(EventLoop eventLoop, final ChannelPromise promise) {
            if (eventLoop == null) {
                throw new NullPointerException("eventLoop");
            }
            if (isRegistered()) {
                promise.setFailure(new IllegalStateException("registered to an event loop already"));
                return;
            }
            if (!isCompatible(eventLoop)) {
                promise.setFailure(
                        new IllegalStateException("incompatible event loop type: " + eventLoop.getClass().getName()));
                return;
            }

            AbstractChannel.this.eventLoop = eventLoop;
            // inEventLoop() 判斷當前線程是否在 eventLoop 中
            // 判斷方式為直接比較 eventloop 線程也當前線程是否是同一個即可 Thread.currentThread() == this.thread;
            // 核心注冊方法 register0()
            if (eventLoop.inEventLoop()) {
                register0(promise);
            } else {
                // 不在 eventLoop 中, 則異步提交任務給 eventloop 處理
                try {
                    eventLoop.execute(new Runnable() {
                        @Override
                        public void run() {
                            register0(promise);
                        }
                    });
                } catch (Throwable t) {
                    logger.warn(
                            "Force-closing a channel whose registration task was not accepted by an event loop: {}",
                            AbstractChannel.this, t);
                    closeForcibly();
                    closeFuture.setClosed();
                    safeSetFailure(promise, t);
                }
            }
        }

        // register0() 做真正的注冊
        // io.netty.channel.AbstractChannel.AbstractUnsafe#register0
        private void register0(ChannelPromise promise) {
            try {
                // check if the channel is still open as it could be closed in the mean time when the register
                // call was outside of the eventLoop
                if (!promise.setUncancellable() || !ensureOpen(promise)) {
                    return;
                }
                boolean firstRegistration = neverRegistered;
                // 具體的注冊邏輯由子類實現, NioServerSocketChannel
                doRegister();
                neverRegistered = false;
                registered = true;

                // Ensure we call handlerAdded(...) before we actually notify the promise. This is needed as the
                // user may already fire events through the pipeline in the ChannelFutureListener.
                // 幾個擴展點: fireHandlerAdded() -> fireChannelRegistered() -> fireChannelActive()
                // part1: fireChannelAdded(), 它將會回調上面的 ServerBootstrapAcceptor 的添加 channelInitializer
                pipeline.invokeHandlerAddedIfNeeded();

                safeSetSuccess(promise);
                // part2: fireChannelRegistered()
                pipeline.fireChannelRegistered();
                // Only fire a channelActive if the channel has never been registered. This prevents firing
                // multiple channel actives if the channel is deregistered and re-registered.
                if (isActive()) {
                    if (firstRegistration) {
                        pipeline.fireChannelActive();
                    } else if (config().isAutoRead()) {
                        // This channel was registered before and autoRead() is set. This means we need to begin read
                        // again so that we process inbound data.
                        //
                        // See https://github.com/netty/netty/issues/4805
                        beginRead();
                    }
                }
            } catch (Throwable t) {
                // Close the channel directly to avoid FD leak.
                closeForcibly();
                closeFuture.setClosed();
                safeSetFailure(promise, t);
            }
        }
    // io.netty.channel.nio.AbstractNioChannel#doRegister
    @Override
    protected void doRegister() throws Exception {
        boolean selected = false;
        // 進行注冊即是 JDK 的 ServerSocketChannel.register() 過程
        // 即 netty 與 socket 建立了關系連接, ops=0, 代表監聽所有讀事件
        for (;;) {
            try {
                // 一直注冊直到成功
                // 此處 ops=0, 即不關注任何事件哦, 那么前面的 OP_ACCEPT 和這里又是什么關系呢?
                selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);
                return;
            } catch (CancelledKeyException e) {
                if (!selected) {
                    // Force the Selector to select now as the "canceled" SelectionKey may still be
                    // cached and not removed because no Select.select(..) operation was called yet.
                    eventLoop().selectNow();
                    selected = true;
                } else {
                    // We forced a select operation on the selector before but the SelectionKey is still cached
                    // for whatever reason. JDK bug ?
                    throw e;
                }
            }
        }
    }
4.4 ServerBootstrapAcceptor 速覽

  前面我們看到, 在做 register() 完了之后, netty 會觸發一個invokeHandlerAddedIfNeeded, 從而調用fireHandlerAdded. 此時將會觸發 handlerAdded() 從而首次調用 ChannelInitializer.initChannel(), 從而將 ServerBootstrapAcceptor 添加到pipeline進來. ServerBootstrapAcceptor 獨立做的事情不多,更多是交給父類處理。

server的啟動流程是什么

ServerBootstrapAcceptor(final Channel channel, EventLoopGroup childGroup, ChannelHandler childHandler,
                Entry<ChannelOption<?>, Object>[] childOptions, Entry<AttributeKey<?>, Object>[] childAttrs) {this.childGroup = childGroup;this.childHandler = childHandler;this.childOptions = childOptions;this.childAttrs = childAttrs;// Task which is scheduled to re-enable auto-read.// It's important to create this Runnable before we try to submit it as otherwise the URLClassLoader may// not be able to load the class because of the file limit it already reached.//// See https://github.com/netty/netty/issues/1328// 
            enableAutoReadTask = new Runnable() {
                @Overridepublic void run() {
                    channel.config().setAutoRead(true);
                }
            };
        }        // ServerBootstrapAcceptor 大部分情況下都是普通的 InboundHandler, 除了 channelRead() 時// io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead        @Override
        @SuppressWarnings("unchecked")public void channelRead(ChannelHandlerContext ctx, Object msg) {final Channel child = (Channel) msg;

            child.pipeline().addLast(childHandler);

            setChannelOptions(child, childOptions, logger);for (Entry<AttributeKey<?>, Object> e: childAttrs) {
                child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
            }try {// 它會向 childGroup 中提交channel過去, 從而使用 childGroup 產生作用childGroup.register(child).addListener(new ChannelFutureListener() {
                    @Overridepublic void operationComplete(ChannelFuture future) throws Exception {if (!future.isSuccess()) {
                            forceClose(child, future.cause());
                        }
                    }
                });
            } catch (Throwable t) {
                forceClose(child, t);
            }
        }
4.5 端口的綁定 doBind0

  經過前面的channel的創建,初始化, Acceptor 的添加到handlerAdded(), 整個pipeline已經work起來了. 然后netty會回調之前添加好的 listeners, 其中一個便是 doBind0();

// 回顧下:        ...// Registration future is almost always fulfilled already, but just in case it's not.final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
            regFuture.addListener(new ChannelFutureListener() {
                @Overridepublic void operationComplete(ChannelFuture future) throws Exception {
                    Throwable cause = future.cause();if (cause != null) {// Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an// IllegalStateException once we try to access the EventLoop of the Channel.                        promise.setFailure(cause);
                    } else {// Registration was successful, so set the correct executor to use.// See https://github.com/netty/netty/issues/2586                        promise.registered();

                        doBind0(regFuture, channel, localAddress, promise);
                    }
                }
            });
        ...// io.netty.bootstrap.AbstractBootstrap#doBind0private static void doBind0(final ChannelFuture regFuture, final Channel channel,final SocketAddress localAddress, final ChannelPromise promise) {// This method is invoked before channelRegistered() is triggered.  Give user handlers a chance to set up// the pipeline in its channelRegistered() implementation.// 這還是一個異步過程channel.eventLoop().execute(new Runnable() {
            @Overridepublic void run() {// channel.bind(), channel 與 端口綁定if (regFuture.isSuccess()) {
                    channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
                } else {
                    promise.setFailure(regFuture.cause());
                }
            }
        });
    }// io.netty.channel.AbstractChannel#bind(java.net.SocketAddress, io.netty.channel.ChannelPromise)    @Overridepublic ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {// bind() 被當作一個普通的出站事件, 在pipeline中被傳遞return pipeline.bind(localAddress, promise);
    }    // io.netty.channel.DefaultChannelPipeline#bind(java.net.SocketAddress, io.netty.channel.ChannelPromise)    @Overridepublic final ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {// 從tail開始傳遞return tail.bind(localAddress, promise);
    }// io.netty.channel.AbstractChannelHandlerContext#bind(java.net.SocketAddress, io.netty.channel.ChannelPromise)    @Overridepublic ChannelFuture bind(final SocketAddress localAddress, final ChannelPromise promise) {if (localAddress == null) {throw new NullPointerException("localAddress");
        }if (isNotValidPromise(promise, false)) {// cancelledreturn promise;
        }// 同樣是一個pipeline式調用, bind() 是一個出站事件, 所以查找 outbound// 最終會調到 DefaultChannelPipeline 中// netty的pipeline機制就體現在這里, 它會一直查找可用的handler, 然后執行它, 直到結束final AbstractChannelHandlerContext next = findContextOutbound();// 獲取其綁定的 executorEventExecutor executor = next.executor();if (executor.inEventLoop()) {
            next.invokeBind(localAddress, promise);
        } else {
            safeExecute(executor, new Runnable() {
                @Overridepublic void run() {
                    next.invokeBind(localAddress, promise);
                }
            }, promise, null);
        }return promise;
    }// -------------------------------------------------------------------------// 出入站handler的查找實現, 非常簡單, 卻很有效 (該方法在 AbstractChannelHandlerContext 中實現,被所有handler通用)// io.netty.channel.AbstractChannelHandlerContext#findContextInboundprivate AbstractChannelHandlerContext findContextInbound() {// 以當前節點作為起點開始查找, 取第一個入站handler返回, 沒有則說明 pipeline 已結束 AbstractChannelHandlerContext ctx = this;do {
            ctx = ctx.next;
        } while (!ctx.inbound);return ctx;
    }// io.netty.channel.AbstractChannelHandlerContext#findContextOutboundprivate AbstractChannelHandlerContext findContextOutbound() {// 以當前節點作為起點開始查找, 取第一個出站handler返回, 沒有則說明 pipeline 已結束 AbstractChannelHandlerContext ctx = this;do {
            ctx = ctx.prev;
        } while (!ctx.outbound);return ctx;
    }// -------------------------------------------------------------------------    // io.netty.channel.AbstractChannelHandlerContext#invokeBindprivate void invokeBind(SocketAddress localAddress, ChannelPromise promise) {if (invokeHandler()) {try {
                ((ChannelOutboundHandler) handler()).bind(this, localAddress, promise);
            } catch (Throwable t) {
                notifyOutboundHandlerException(t, promise);
            }
        } else {
            bind(localAddress, promise);
        }
    }// 最終傳遞到 HeadContext 中進行處理// io.netty.channel.DefaultChannelPipeline.HeadContext#bind        @Overridepublic void bind(
                ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise)throws Exception {// unsafe 處理bind() 操作            unsafe.bind(localAddress, promise);
        }// io.netty.channel.AbstractChannel.AbstractUnsafe#bind        @Overridepublic final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
            assertEventLoop();if (!promise.setUncancellable() || !ensureOpen(promise)) {return;
            }// See: https://github.com/netty/netty/issues/576if (Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&localAddress instanceof InetSocketAddress &&
                !((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress() &&
                !PlatformDependent.isWindows() && !PlatformDependent.maybeSuperUser()) {// Warn a user about the fact that a non-root user can't receive a// broadcast packet on *nix if the socket is bound on non-wildcard address.                logger.warn("A non-root user can't receive a broadcast packet if the socket ">);
            }boolean wasActive = isActive();try {// 這里會調用 jdk 的ServerSocketChannel接口, 實現真正的端口綁定// 至此, 服務對外可見                doBind(localAddress);
            } catch (Throwable t) {
                safeSetFailure(promise, t);
                closeIfClosed();return;
            }// 判斷是否是首次創建 channel, 如果是, 則調用 fireChannelActive() 傳播channelActive事件if (!wasActive && isActive()) {// 這將會被稍后執行invokeLater(new Runnable() {
                    @Overridepublic void run() {
                        pipeline.fireChannelActive();
                    }
                });
            }// 觸發一些通知什么的, 結束了            safeSetSuccess(promise);
        }// 最終的bind(), 是通過 jdk 底層的 serverSocketChannel 開啟socket監聽// io.netty.channel.socket.nio.NioServerSocketChannel#doBind    @Overrideprotected void doBind(SocketAddress localAddress) throws Exception {if (PlatformDependent.javaVersion() >= 7) {// 調用 serverSocketChannel bind() 方法,開啟socket監聽            javaChannel().bind(localAddress, config.getBacklog());
        } else {
            javaChannel().socket().bind(localAddress, config.getBacklog());
        }
    }

至此, bind 工作總算是完成了.我們來總結下它的主要工作:

    1. 初始化一個channel, 根據設置里來, 我們使用 NioServerSocketChannel;
    2. 過繼現有的配置項給到channel;
    3. 將channel與eventloop綁定做注冊, 添加 ServerBootstrapAcceptor 到 pipeline 中;
    4. 綁定完成后, 通知現有的handler, 觸發系列事件: fireHandlerAdded() -> fireChannelRegistered() -> fireChannelActive();
    5. 而bind()則作為一個出站事件, 被處理, 最終調用 jdk的ServerSocketChannel.register() 完成端口的開啟;

  不過有一點需要注意, 在這個過程中, 只有 bossGroup 起作用, 所有的 workGroup 都還在待命中. 我們目前看到的 pipeline 是這樣的: head -> Acceptor -> tail;

  講了這么多, 有一種繞了一大圈的感覺有木有, 如果你自己直接使用nio寫, 估計10行代碼都不要就搞定了. 尷尬!

5. netty eventloop 主循環

  evenloop是netty的重要概念, 但在前面我們并未細講這玩意如何起作用(僅看過其創建過程而已), 不過這并不意味著它還沒起作用, 而是我們暫時忽略了它. 每次要執行任務時, 總是會調用 eventloop().execute(...), 實際上這就是 eventloop的入口:

// io.netty.util.concurrent.SingleThreadEventExecutor#execute    @Overridepublic void execute(Runnable task) {// execute 在線程池中, 是一個異步任務的提交方法, eventloop中同樣也一樣// 但是大部分情況下只是添加隊列, 因為 eventloop 是單線程的if (task == null) {throw new NullPointerException("task");
        }// 向eventLoop隊列中添加task                                                                          boolean inEventLoop = inEventLoop();
        addTask(task);// 如果自身就是運行在 eventloop 環境中, 添加完task后則不再做更多的事if (!inEventLoop) {// 如果不是在eventLoop線程中,則都會嘗試創建新線程運行, 但實際會重新檢測線程是否創建            startThread();if (isShutdown() && removeTask(task)) {
                reject();
            }
        }if (!addTaskWakesUp && wakesUpForTask(task)) {
            wakeup(inEventLoop);
        }
    }// io.netty.util.concurrent.SingleThreadEventExecutor#addTask/** * Add a task to the task queue, or throws a {@link RejectedExecutionException} if this instance was shutdown
     * before.     */protected void addTask(Runnable task) {if (task == null) {throw new NullPointerException("task");
        }// taskQueue = MpscUnsafeUnboundedArrayQueue, 基于Unsafe 和 cas 實現的線程安全的隊列if (!offerTask(task)) {// 添加失敗,則走拒絕策略            reject(task);
        }
    }// startThread, 看起來是開啟線程的意思, 卻又不太一樣private void startThread() {// 所以實際上只會創建一次線程if (state == ST_NOT_STARTED) {// 搶到鎖的線程才能調用start()方法if (STATE_UPDATER.compareAndSet(this, ST_NOT_STARTED, ST_STARTED)) {try {
                    doStartThread();
                } catch (Throwable cause) {
                    STATE_UPDATER.set(this, ST_NOT_STARTED);
                    PlatformDependent.throwException(cause);
                }
            }
        }
    }// 開啟eventLoop的線程// io.netty.util.concurrent.SingleThreadEventExecutor#doStartThreadprivate void doStartThread() {assert thread == null;// 它并不是簡單的thread.start()executor.execute(new Runnable() {
            @Overridepublic void run() {
                thread = Thread.currentThread();if (interrupted) {
                    thread.interrupt();
                }boolean success = false;
                updateLastExecutionTime();try {// 核心方法,由 SingleThreadEventExecutor.run() 實現 // 當然是由具體的executor具體實現了, 此文為 NioEventLoop.run()SingleThreadEventExecutor.this.run();
                    success = true;
                } catch (Throwable t) {
                    logger.warn("Unexpected exception from an event executor: ", t);
                } finally {// 線程池關閉,優雅停機                    ...
                }
            }
        });
    }

核心: 事件循環主框架, 既然是事件循環,則其必然是不會退出的。

// io.netty.channel.nio.NioEventLoop#run    @Overrideprotected void run() {// 一個死循環檢測任務, 這就 eventloop 的大殺器哦for (;;) {try {switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {case SelectStrategy.CONTINUE:continue;// 有任務時執行任務, 否則阻塞等待網絡事件, 或被喚醒case SelectStrategy.SELECT:// select.select(), 帶超時限制select(wakenUp.getAndSet(false));// 'wakenUp.compareAndSet(false, true)' is always evaluated// before calling 'selector.wakeup()' to reduce the wake-up// overhead. (Selector.wakeup() is an expensive operation.)//// However, there is a race condition in this approach.// The race condition is triggered when 'wakenUp' is set to// true too early.//// 'wakenUp' is set to true too early if:// 1) Selector is waken up between 'wakenUp.set(false)' and//    'selector.select(...)'. (BAD)// 2) Selector is waken up between 'selector.select(...)' and//    'if (wakenUp.get()) { ... }'. (OK)//// In the first case, 'wakenUp' is set to true and the// following 'selector.select(...)' will wake up immediately.// Until 'wakenUp' is set to false again in the next round,// 'wakenUp.compareAndSet(false, true)' will fail, and therefore// any attempt to wake up the Selector will fail, too, causing// the following 'selector.select(...)' call to block// unnecessarily.//// To fix this problem, we wake up the selector again if wakenUp// is true immediately after selector.select(...).// It is inefficient in that it wakes up the selector for both// the first case (BAD - wake-up required) and the second case// (OK - no wake-up required).if (wakenUp.get()) {
                            selector.wakeup();
                        }// fall throughdefault:
                }

                cancelledKeys = 0;
                needsToSelectAgain = false;// ioRatio 為io操作的占比, 和運行任務相比, 默認為 50:50final int ioRatio = this.ioRatio;if (ioRatio == 100) {try {// step1. 運行io操作                        processSelectedKeys();
                    } finally {// Ensure we always run tasks.// step2. 運行task任務                        runAllTasks();
                    }
                } else {final long ioStartTime = System.nanoTime();try {
                        processSelectedKeys();
                    } finally {// Ensure we always run tasks.final long ioTime = System.nanoTime() - ioStartTime;// 運行任務的最長時間runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
                    }
                }
            } catch (Throwable t) {
                handleLoopException(t);
            }// Always handle shutdown even if the loop processing threw an exception.try {if (isShuttingDown()) {
                    closeAll();if (confirmShutdown()) {return;
                    }
                }
            } catch (Throwable t) {
                handleLoopException(t);
            }
        }
    }// select, 事件循環的依據private void select(boolean oldWakenUp) throws IOException {
        Selector selector = this.selector;try {int selectCnt = 0;long currentTimeNanos = System.nanoTime();// 帶超時限制, 默認最大超時1s, 但當有延時任務處理時, 以它為標準long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);for (;;) {long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;if (timeoutMillis <= 0) {// 超時則立即返回if (selectCnt == 0) {
                        selector.selectNow();
                        selectCnt = 1;
                    }break;
                }// If a task was submitted when wakenUp value was true, the task didn't get a chance to call// Selector#wakeup. So we need to check task queue again before executing select operation.// If we don't, the task might be pended until select operation was timed out.// It might be pended until idle timeout if IdleStateHandler existed in pipeline.if (hasTasks() && wakenUp.compareAndSet(false, true)) {
                    selector.selectNow();
                    selectCnt = 1;break;
                }int selectedKeys = selector.select(timeoutMillis);
                selectCnt ++;if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {// - Selected something,// - waken up by user, or// - the task queue has a pending task.// - a scheduled task is ready for processingbreak;
                }if (Thread.interrupted()) {// Thread was interrupted so reset selected keys and break so we not run into a busy loop.// As this is most likely a bug in the handler of the user or it's client library we will// also log it.//// See https://github.com/netty/netty/issues/2426if (logger.isDebugEnabled()) {
                        logger.debug("Selector.select() returned prematurely because " +
                                "Thread.currentThread().interrupt() was called. Use " +
                                "NioEventLoop.shutdownGracefully() to shutdown the NioEventLoop.");
                    }
                    selectCnt = 1;break;
                }long time = System.nanoTime();if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {// timeoutMillis elapsed without anything selected.selectCnt = 1;
                } else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {// The selector returned prematurely many times in a row.// Rebuild the selector to work around the problem.                    logger.warn("Selector.select() returned prematurely {} times in a row; rebuilding Selector {}.",
                            selectCnt, selector);

                    rebuildSelector();
                    selector = this.selector;// Select again to populate selectedKeys.                    selector.selectNow();
                    selectCnt = 1;break;
                }

                currentTimeNanos = time;
            }if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) {if (logger.isDebugEnabled()) {
                    logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",
                            selectCnt - 1, selector);
                }
            }
        } catch (CancelledKeyException e) {if (logger.isDebugEnabled()) {
                logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector {} - JDK bug?",
                        selector, e);
            }// Harmless exception - log anyway        }
    }

反正整體就是這樣了, 循環檢測select, 運行io事件及execute task.

  有了這個 eventloop, 整體server就可以run起來了, 不管是有外部請求進來, 還是有內部任務提交, 都將被eventloop執行.

  不過還有一點未澄清的: 前面在做channel.register()時傳遞了一個 ops=0, 那它是如何監聽新連接事件的呢? 

  實際上它是在注冊激活完成之后, 再進行了一個read()的操作, 重新將 OP_ACCEPT 添加到 selectionKey 中了.(沒錯,底層永遠沒那么多花招)

// io.netty.channel.DefaultChannelPipeline.HeadContext#channelActive        @Overridepublic void channelActive(ChannelHandlerContext ctx) throws Exception {
            ctx.fireChannelActive();// 會觸發 read() 流程, 修改 selectionKey 的 ops 標志位            readIfIsAutoRead();
        }
        ...// io.netty.channel.AbstractChannel.AbstractUnsafe#beginRead        @Overridepublic final void beginRead() {
            assertEventLoop();if (!isActive()) {return;
            }try {
                doBeginRead();
            } catch (final Exception e) {
                invokeLater(new Runnable() {
                    @Overridepublic void run() {
                        pipeline.fireExceptionCaught(e);
                    }
                });
                close(voidPromise());
            }
        }// io.netty.channel.nio.AbstractNioMessageChannel#doBeginRead    @Overrideprotected void doBeginRead() throws Exception {if (inputShutdown) {return;
        }super.doBeginRead();
    }// io.netty.channel.nio.AbstractNioChannel#doBeginRead    @Overrideprotected void doBeginRead() throws Exception {// Channel.read() or ChannelHandlerContext.read() was calledfinal SelectionKey selectionKey = this.selectionKey;if (!selectionKey.isValid()) {return;
        }

        readPending = true;final int interestOps = selectionKey.interestOps();if ((interestOps & readInterestOp) == 0) {// readInterestOp, 即是前面設置的 OP_ACCEPTselectionKey.interestOps(interestOps | readInterestOp);
        }
    }

感謝各位的閱讀,以上就是“server的啟動流程是什么”的內容了,經過本文的學習后,相信大家對server的啟動流程是什么這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

泉州市| 娄烦县| 上杭县| 临朐县| 阿拉尔市| 阜康市| 华蓥市| 准格尔旗| 平遥县| 花垣县| 和龙市| 湄潭县| 灵丘县| 太康县| 永平县| 新巴尔虎左旗| 阿克| 苍南县| 封丘县| 大足县| 嘉定区| 彭州市| 平果县| 南昌县| 揭阳市| 正安县| 崇信县| 平罗县| 武宣县| 铜陵市| 盘锦市| 伊川县| 绥中县| 河东区| 基隆市| 宜昌市| 曲沃县| 凤山县| 广灵县| 扶沟县| 景洪市|