您好,登錄后才能下訂單哦!
今天就跟大家聊聊有關R語言典型相關分析的參考資料有哪些,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結了以下內容,希望大家根據這篇文章可以有所收獲。
典型相關分析(Canonical Correlation analysis, CCA)是研究兩組變量之間相關關系的一種統計方法。如果每組變量中只包含一個變量,相關關系可以用相關系數來度量。但是每組變量中變量個數大于1時,比如A組溫度和濕度兩個變量,B組樹高胸徑兩個變量,度量這兩組變量之間的相關關系,可以利用主成分的思想,把兩組變量的相關關系分別轉化成兩個綜合變量的最大可能的相關關系,就是典型相關分析(CCA)。——摘自《應用統計分析與R語言實戰》
健康兒童形態 | 肺通氣功能 |
---|---|
身高 x1 (cm) | 肺活量 y1 (L) |
體重 x2 (kg) | 靜息通氣 y2 (L) |
胸圍 x3 (cm) | 每分鐘最大通氣量 y3 (L) |
df<-read.table("clipboard",header=T)
df
ndat<-scale(df)
A<-ndat[,1:3]
B<-ndat[,4:6]
res.ca<-cancor(A,B,xcenter=FALSE,ycenter = FALSE)
res.ca
研究人員感興趣的是(Researchers are intersted in)心理變量和學術變量還有性別之間的關系是怎樣的?特別的(In particular)。研究人員感興趣的是需要多少維度(how many dimensions (canonical variables))來理解兩組變量之間的關系
install.packages("GGally")
install.packages("CCA")
library(ggplot2)
library(GGally)
library(CCA)
mm<-read.csv("https://stats.idre.ucla.edu/stat/data/mmreg.csv")
head(mm)
colnames(mm)<-c("Control","Concept","Motivation","Read","Write","Math","Science","Gender")
summary(mm)
xtabs(~Gender,data=mm)
#輸出結果
Gender
0 1
273 327
#
psych<-mm[,1:3]
acad<-mm[,4:8]
library(CCA)
matcor(psych,acad)
#輸出結果
$Xcor
Control Concept Motivation
Control 1.0000000 0.1711878 0.2451323
Concept 0.1711878 1.0000000 0.2885707
Motivation 0.2451323 0.2885707 1.0000000
$Ycor
Read Write Math Science Gender
Read 1.00000000 0.6285909 0.6792757 0.6906929 -0.04174278
Write 0.62859089 1.0000000 0.6326664 0.5691498 0.24433183
Math 0.67927568 0.6326664 1.0000000 0.6495261 -0.04821830
Science 0.69069291 0.5691498 0.6495261 1.0000000 -0.13818587
Gender -0.04174278 0.2443318 -0.0482183 -0.1381859 1.00000000
$XYcor
Control Concept Motivation Read Write
Control 1.0000000 0.17118778 0.24513227 0.37356505 0.35887684
Concept 0.1711878 1.00000000 0.28857075 0.06065584 0.01944856
Motivation 0.2451323 0.28857075 1.00000000 0.21060992 0.25424818
Read 0.3735650 0.06065584 0.21060992 1.00000000 0.62859089
Write 0.3588768 0.01944856 0.25424818 0.62859089 1.00000000
Math 0.3372690 0.05359770 0.19501347 0.67927568 0.63266640
Science 0.3246269 0.06982633 0.11566948 0.69069291 0.56914983
Gender 0.1134108 -0.12595132 0.09810277 -0.04174278 0.24433183
Math Science Gender
Control 0.3372690 0.32462694 0.11341075
Concept 0.0535977 0.06982633 -0.12595132
Motivation 0.1950135 0.11566948 0.09810277
Read 0.6792757 0.69069291 -0.04174278
Write 0.6326664 0.56914983 0.24433183
Math 1.0000000 0.64952612 -0.04821830
Science 0.6495261 1.00000000 -0.13818587
Gender -0.0482183 -0.13818587 1.00000000
看完上述內容,你們對R語言典型相關分析的參考資料有哪些有進一步的了解嗎?如果還想了解更多知識或者相關內容,請關注億速云行業資訊頻道,感謝大家的支持。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。