您好,登錄后才能下訂單哦!
這篇文章主要介紹“有些時候Python中乘法比位運算更快的原因是什么”,在日常操作中,相信很多人在有些時候Python中乘法比位運算更快的原因是什么問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”有些時候Python中乘法比位運算更快的原因是什么”的疑惑有所幫助!接下來,請跟著小編一起來學習吧!
首先秉持著實事求是的精神,我們先來驗證一下:
In [33]: %timeit 1073741825*2 7.47 ns ± 0.0843 ns per loop (mean ± std. dev. of 7 runs, 100000000 loops each) In [34]: %timeit 1073741825<<1 7.43 ns ± 0.0451 ns per loop (mean ± std. dev. of 7 runs, 100000000 loops each) In [35]: %timeit 1073741823<<1 7.48 ns ± 0.0621 ns per loop (mean ± std. dev. of 7 runs, 100000000 loops each) In [37]: %timeit 1073741823*2 7.47 ns ± 0.0564 ns per loop (mean ± std. dev. of 7 runs, 100000000 loops each)
我們發現幾個很有趣的現象:
在值 x<=2^30 時,乘法比直接位運算要快
在值 x>2^32 時,乘法顯著慢于位運算
這個現象很有趣,那么這個現象的 root cause 是什么?實際上這和 Python 底層的實現有關。
簡單聊聊
1. PyLongObject 的實現
在 Python 2.x 時期,Python 中將整型分為兩類,一類是 long, 一類是 int 。在 Python3 中這兩者進行了合并。目前在 Python3 中這兩者做了合并,僅剩一個 long。
首先來看看 long 這樣一個數據結構底層的實現:
struct _longobject { PyObject_VAR_HEAD digit ob_digit[1]; };
在這里不用關心,PyObject_VAR_HEAD 的含義,我們只需要關心 ob_digit 即可。
在這里,ob_digit 是使用了 C99 中的“柔性數組”來實現任意長度的整數的存儲。這里我們可以看一下官方代碼中的文檔:
Long integer representation.The absolute value of a number is equal to SUM(for i=0 through abs(ob_size)-1) ob_digit[i] * 2**(SHIFT*i) Negative numbers are represented with ob_size < 0; zero is represented by ob_size == 0. In a normalized number, ob_digit[abs(ob_size)-1] (the most significant digit) is never zero. Also, in all cases, for all valid i,0 <= ob_digit[i] <= MASK. The allocation function takes care of allocating extra memory so that ob_digit[0] ... ob_digit[abs(ob_size)-1] are actually available. CAUTION: Generic code manipulating subtypes of PyVarObject has to aware that ints abuse ob_size's sign bit. |
簡而言之,Python 是將一個十進制數轉為 2^(SHIFT) 進制數來進行存儲。這里可能不太好了理解。我來舉個例子,在我的電腦上,SHIFT 為 30 ,假設現在有整數 1152921506754330628 ,那么將其轉為 2^30 進制表示則為: 4*(2^30)^0+2*(2^30)^1+1*(2^30)^2 。那么此時 ob_digit 是一個含有三個元素的數組,其值為 [4,2,1]。
OK,在明白了這樣一些基礎知識后,我們回過頭去看看 Python 中的乘法運算。
2. Python 中的乘法運算
Python 中的乘法運算,分為兩部分,其中關于大數的乘法,Python 使用了 Karatsuba 算法1,具體實現如下:
static PyLongObject * k_mul(PyLongObject *a, PyLongObject *b) { Py_ssize_t asize = Py_ABS(Py_SIZE(a)); Py_ssize_t bsize = Py_ABS(Py_SIZE(b)); PyLongObject *ah = NULL; PyLongObject *al = NULL; PyLongObject *bh = NULL; PyLongObject *bl = NULL; PyLongObject *ret = NULL; PyLongObject *t1, *t2, *t3; Py_ssize_t shift; /* the number of digits we split off */ Py_ssize_t i; /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl * Then the original product is * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl * By picking X to be a power of 2, "*X" is just shifting, and it's * been reduced to 3 multiplies on numbers half the size. */ /* We want to split based on the larger number; fiddle so that b * is largest. */ if (asize > bsize) { t1 = a; a = b; b = t1; i = asize; asize = bsize; bsize = i; } /* Use gradeschool math when either number is too small. */ i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF; if (asize <= i) { if (asize == 0) return (PyLongObject *)PyLong_FromLong(0); else return x_mul(a, b); } /* If a is small compared to b, splitting on b gives a degenerate * case with ah==0, and Karatsuba may be (even much) less efficient * than "grade school" then. However, we can still win, by viewing * b as a string of "big digits", each of width a->ob_size. That * leads to a sequence of balanced calls to k_mul. */ if (2 * asize <= bsize) return k_lopsided_mul(a, b); /* Split a & b into hi & lo pieces. */ shift = bsize >> 1; if (kmul_split(a, shift, &ah, &al) < 0) goto fail; assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */ if (a == b) { bh = ah; bl = al; Py_INCREF(bh); Py_INCREF(bl); } else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail; /* The plan: * 1. Allocate result space (asize + bsize digits: that's always * enough). * 2. Compute ah*bh, and copy into result at 2*shift. * 3. Compute al*bl, and copy into result at 0. Note that this * can't overlap with #2. * 4. Subtract al*bl from the result, starting at shift. This may * underflow (borrow out of the high digit), but we don't care: * we're effectively doing unsigned arithmetic mod * BASE**(sizea + sizeb), and so long as the *final* result fits, * borrows and carries out of the high digit can be ignored. * 5. Subtract ah*bh from the result, starting at shift. * 6. Compute (ah+al)*(bh+bl), and add it into the result starting * at shift. */ /* 1. Allocate result space. */ ret = _PyLong_New(asize + bsize); if (ret == NULL) goto fail; #ifdef Py_DEBUG /* Fill with trash, to catch reference to uninitialized digits. */ memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit)); #endif /* 2. t1 <- ah*bh, and copy into high digits of result. */ if ((t1 = k_mul(ah, bh)) == NULL) goto fail; assert(Py_SIZE(t1) >= 0); assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret)); memcpy(ret->ob_digit + 2*shift, t1->ob_digit, Py_SIZE(t1) * sizeof(digit)); /* Zero-out the digits higher than the ah*bh copy. */ i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1); if (i) memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0, i * sizeof(digit)); /* 3. t2 <- al*bl, and copy into the low digits. */ if ((t2 = k_mul(al, bl)) == NULL) { Py_DECREF(t1); goto fail; } assert(Py_SIZE(t2) >= 0); assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */ memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit)); /* Zero out remaining digits. */ i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */ if (i) memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit)); /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first * because it's fresher in cache. */ i = Py_SIZE(ret) - shift; /* # digits after shift */ (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2)); Py_DECREF(t2); (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1)); Py_DECREF(t1); /* 6. t3 <- (ah+al)(bh+bl), and add into result. */ if ((t1 = x_add(ah, al)) == NULL) goto fail; Py_DECREF(ah); Py_DECREF(al); ah = al = NULL; if (a == b) { t2 = t1; Py_INCREF(t2); } else if ((t2 = x_add(bh, bl)) == NULL) { Py_DECREF(t1); goto fail; } Py_DECREF(bh); Py_DECREF(bl); bh = bl = NULL; t3 = k_mul(t1, t2); Py_DECREF(t1); Py_DECREF(t2); if (t3 == NULL) goto fail; assert(Py_SIZE(t3) >= 0); /* Add t3. It's not obvious why we can't run out of room here. * See the (*) comment after this function. */ (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3)); Py_DECREF(t3); return long_normalize(ret); fail: Py_XDECREF(ret); Py_XDECREF(ah); Py_XDECREF(al); Py_XDECREF(bh); Py_XDECREF(bl); return NULL; }
這里不對 Karatsuba 算法1 的實現做單獨解釋,有興趣的朋友可以參考文末的 reference 去了解具體的詳情。
在普通情況下,普通乘法的時間復雜度為 n^2 (n 為位數),而 K 算法的時間復雜度為 3n^(log3) ≈ 3n^1.585 ,看起來 K 算法的性能要優于普通乘法,那么為什么 Python 不全部使用 K 算法呢?
很簡單,K 算法的優勢實際上要在當 n 足夠大的時候,才會對普通乘法形成優勢。同時考慮到內存訪問等因素,當 n 不夠大時,實際上采用 K 算法的性能將差于直接進行乘法。
所以我們來看看 Python 中乘法的實現:
static PyObject * long_mul(PyLongObject *a, PyLongObject *b) { PyLongObject *z; CHECK_BINOP(a, b); /* fast path for single-digit multiplication */ if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) { stwodigits v = (stwodigits)(MEDIUM_VALUE(a)) * MEDIUM_VALUE(b); return PyLong_FromLongLong((long long)v); } z = k_mul(a, b); /* Negate if exactly one of the inputs is negative. */ if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z) { _PyLong_Negate(&z); if (z == NULL) return NULL; } return (PyObject *)z; }
在這里我們看到,當兩個數皆小于 2^30-1 時,Python 將直接使用普通乘法并返回,否則將使用 K 算法進行計算
這個時候,我們來看一下位運算的實現,以右移為例:
static PyObject * long_rshift(PyObject *a, PyObject *b) { Py_ssize_t wordshift; digit remshift; CHECK_BINOP(a, b); if (Py_SIZE(b) < 0) { PyErr_SetString(PyExc_ValueError, "negative shift count"); return NULL; } if (Py_SIZE(a) == 0) { return PyLong_FromLong(0); } if (divmod_shift(b, &wordshift, &remshift) < 0) return NULL; return long_rshift1((PyLongObject *)a, wordshift, remshift); } static PyObject * long_rshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift) { PyLongObject *z = NULL; Py_ssize_t newsize, hishift, i, j; digit lomask, himask; if (Py_SIZE(a) < 0) { /* Right shifting negative numbers is harder */ PyLongObject *a1, *a2; a1 = (PyLongObject *) long_invert(a); if (a1 == NULL) return NULL; a2 = (PyLongObject *) long_rshift1(a1, wordshift, remshift); Py_DECREF(a1); if (a2 == NULL) return NULL; z = (PyLongObject *) long_invert(a2); Py_DECREF(a2); } else { newsize = Py_SIZE(a) - wordshift; if (newsize <= 0) return PyLong_FromLong(0); hishift = PyLong_SHIFT - remshift; lomask = ((digit)1 << hishift) - 1; himask = PyLong_MASK ^ lomask; z = _PyLong_New(newsize); if (z == NULL) return NULL; for (i = 0, j = wordshift; i < newsize; i++, j++) { z->ob_digit[i] = (a->ob_digit[j] >> remshift) & lomask; if (i+1 < newsize) z->ob_digit[i] |= (a->ob_digit[j+1] << hishift) & himask; } z = maybe_small_long(long_normalize(z)); } return (PyObject *)z; }
到此,關于“有些時候Python中乘法比位運算更快的原因是什么”的學習就結束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學習,快去試試吧!若想繼續學習更多相關知識,請繼續關注億速云網站,小編會繼續努力為大家帶來更多實用的文章!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。