您好,登錄后才能下訂單哦!
這篇文章主要講解了“Python多進程庫multiprocessing有什么作用”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“Python多進程庫multiprocessing有什么作用”吧!
multiprocessing庫是基于threading API,它可以把工作劃分為多個進程。有些情況下,multiprocessing可以作為臨時替換取代threading來利用多個CPU內核,相應地避免Python全局解釋器鎖所帶來的計算瓶頸。
下面,我們來看看multiprocessing庫創建進程與threading庫有多像。
要創建一個進程,最簡單的方式是用一個目標函數實例化一個Process對象,然后與threading一樣調用start()函數讓它工作。示例如下:
import multiprocessing def worker(): for i in range(3): print(i) if __name__=="__main__": p = multiprocessing.Process(target=worker) p.start()
運行之后,效果如下:
需要注意的是,multiprocessing庫在Windows創建進程必須在if __name__=="__main__":中,這是 Windows 上多進程的實現問題。在 Windows 上,子進程會自動 import 啟動它的這個文件,而在 import 的時候是會執行這些語句的。如果直接創建就會無限遞歸創建子進程報錯。所以必須把創建子進程的部分用那個 if 判斷保護起來,import 的時候 __name__ 不是 __main__ ,就不會遞歸運行了。
在threading線程中,我們可以通過其參數name設置線程名,同樣的我們也可以通過name參數設置其進程的名字。示例如下:
import multiprocessing import time def worker(): print(multiprocessing.current_process().name, "start") time.sleep(2) print(multiprocessing.current_process().name, "end") if __name__ == "__main__": p1 = multiprocessing.Process(name='p1', target=worker) p2 = multiprocessing.Process(name='p2', target=worker) p3 = multiprocessing.Process(name='p3', target=worker) p1.start() p2.start() p3.start()
運行之后,效果如下:
和線程一樣,在所有子進程沒有退出之前,主程序是不會退出的。有時候,我們可能需要啟動一個后臺進程,它可以一直運行而不阻塞主程序退出。
要標志一個守護進程,可以將其添加第3個參數daemon,設置為True。默認值為False,不作為守護進程。示例如下:
import multiprocessing import time def worker(): print(multiprocessing.current_process().name, "start") time.sleep(1) print(multiprocessing.current_process().name, "end") def worker2(): print(multiprocessing.current_process().name, "start") time.sleep(2) print(multiprocessing.current_process().name, "end") if __name__ == "__main__": p1 = multiprocessing.Process(name='p1', target=worker) p2 = multiprocessing.Process(name='p2', target=worker2, daemon=True) p3 = multiprocessing.Process(name='p3', target=worker2, daemon=True) p1.start() p2.start() p3.start()
運行之后,效果如下:
p2,p3為守護進程,但p1不是所以執行1秒之后,就退出主程序了,也就沒有打印p2p3的內容。但是其依舊在執行中,直到執行完成。
同樣的,如果你期望強制等待一個守護進程的結束,可以增加join()函數。還是上面的代碼,示例如下:
import multiprocessing import time def worker(): print(multiprocessing.current_process().name, "start") time.sleep(1) print(multiprocessing.current_process().name, "end") def worker2(): print(multiprocessing.current_process().name, "start") time.sleep(2) print(multiprocessing.current_process().name, "end") if __name__ == "__main__": p1 = multiprocessing.Process(name='p1', target=worker) p2 = multiprocessing.Process(name='p2', target=worker2, daemon=True) p3 = multiprocessing.Process(name='p3', target=worker2, daemon=True) p1.start() p2.start() p3.start() p1.join() p2.join() p3.join()
運行之后,和設置進程名的運行結果一樣,這里不再展示。唯一與守護進程代碼的區別就是最后三行join()函數代碼。當然,也可以像線程一樣,給join()函數傳入一個時間,超過這個時間,主線程不再等待。
如果一個進程已經掛起或者不小心進入了死鎖狀態,那么這個時候,我們往往會強制的結束進程。對一個進程對象調用terminate()會結束子進程。示例如下:
import multiprocessing import time def worker(): print(multiprocessing.current_process().name, "start") time.sleep(5) print(multiprocessing.current_process().name, "end") if __name__ == "__main__": p1 = multiprocessing.Process(name='p1', target=worker) p1.start() print("是否還在運行", p1.is_alive()) p1.terminate() print("是否還在運行", p1.is_alive()) p1.join() print("是否還在運行", p1.is_alive())
運行之后,輸出如下:
終止進程后要使用join()函數等待進程的退出。使進程管理代碼有足夠的時間更新對象的狀態,以反應進程已經終止。
進程退出時,生成的狀態碼可以通過exitcode屬性訪問。下表就是其狀態碼的取值范圍以及其意義:
測試如下:
import multiprocessing import time def worker(): print(multiprocessing.current_process().name, "start") time.sleep(5) print(multiprocessing.current_process().name, "end") if __name__ == "__main__": p1 = multiprocessing.Process(name='p1', target=worker) p2 = multiprocessing.Process(name='p2', target=worker) p1.start() p2.start() print("是否還在運行", p1.is_alive()) p1.terminate() print("是否還在運行", p1.is_alive()) print(p1.exitcode) p1.join() print("是否還在運行", p1.is_alive()) print(p1.exitcode) time.sleep(5.5) print(p2.exitcode)
運行之后,效果如下:
可以看到,強制退出的進程錯誤碼為負數,正常退出的進程錯誤碼為0。
調試并發問題時,如果能夠訪問multiprocessing所提供對象的內部狀態,那么這會很有用。在實際的項目中,我們可以使用一個方便的模塊級函數啟用日志記錄,它使用logging建立一個日志記錄器對象,并增加一個處理器,使日志消息被發送到標準錯誤通道。
示例如下:
import multiprocessing import logging import sys def worker(): print("運行工作進程") sys.stdout.flush() if __name__ == "__main__": multiprocessing.log_to_stderr(logging.DEBUG) p1 = multiprocessing.Process(name='p1', target=worker) p1.start() p1.join()
運行之后,效果如下:
與線程一樣,我們可以自定義進程,而不必只是傳入一個函數進行進程的創建。
創建的進程的方式也是派生自進程類即可。示例如下:
import multiprocessing class WorkerProcess(multiprocessing.Process): def run(self): print(self.name) return if __name__ == "__main__": for i in range(5): p = WorkerProcess() p.start() p.join()
運行之后,效果如下:
感謝各位的閱讀,以上就是“Python多進程庫multiprocessing有什么作用”的內容了,經過本文的學習后,相信大家對Python多進程庫multiprocessing有什么作用這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。