您好,登錄后才能下訂單哦!
這期內容當中小編將會給大家帶來有關怎么在python中使用pandas進行模糊匹配,文章內容豐富且以專業的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
Python是一種編程語言,內置了許多有效的工具,Python幾乎無所不能,該語言通俗易懂、容易入門、功能強大,在許多領域中都有廣泛的應用,例如最熱門的大數據分析,人工智能,Web開發等。
數據代表了各個城市店鋪的裝修和配置費用,要統計出裝修和配置項的總費用并進行加和計算;
import pandas as pd #1.讀取數據 df = pd.read_excel(r'./data/pfee.xlsx') print(df)
cols = list(df.columns) print(cols)
#2.獲取含有裝修 和 配置 字段的數據 zx_lists=[] pz_lists=[] for name in cols: if '裝修' in name: zx_lists.append(name) elif '配置' in name: pz_lists.append(name) print(zx_lists) print(pz_lists)
#3.對裝修和配置項費用進行求和計算 df['裝修-求和'] =df[zx_lists].apply(lambda x:x.sum(),axis=1) df['配置-求和'] = df[pz_lists].apply(lambda x:x.sum(),axis=1) print(df)
補充:pandas 中dataframe 中的模糊匹配 與pyspark dataframe 中的模糊匹配
匹配一個很簡單,批量匹配如下
df_obj[df_obj['title'].str.contains(r'.*?n.*')] #使用正則表達式進行模糊匹配,*匹配0或無限次,?匹配0或1次
pyspark dataframe 中模糊匹配有兩種方式
df1=df.filter("uri rlike 'com.tencent.tmgp.sgame|%E8%80%85%E8%8D%A3%E8%80%80_|android.ugc.live|\ %e7%88f%e8%a7%86%e9%a2%91|%E7%%8F%E8%A7%86%E9%A2%91'").groupBy("uri").\ count().sort("count", ascending=False)
注意點:
1.rlike 后面進行批量匹配用引號包裹即可
2.rlike 中要匹配特殊字符的話,不需要轉義
3.rlike '\\\\bapple\\\\b' 雖然也可以匹配但是匹配數量不全,具體原因不明,歡迎討論。
In [5]: df.filter("name rlike '%'").show() +---+------+-----+ |age|height| name| +---+------+-----+ | 4| 140|A%l%i| | 6| 180| i%ce| +---+------+-----+
spark.sql("select uri from t where uri like '%com.tencent.tmgp.sgame%' or uri like 'douyu'").show(5)
如果要批量匹配的話,就需要在后面繼續添加uri like '%blabla%',就有點繁瑣了。
對了這里需要提到原生sql 的批量匹配,regexp 就很方便了,跟rlike 有點相似
mysql> select count(*) from url_parse where uri regexp 'android.ugc.live|com.tencent.tmgp.sgame'; +----------+ | count(*) | +----------+ | 9768 | +----------+ 1 row in set (0.52 sec)
于是這里就可以將sql中regexp 應用到spark sql 中
In [9]: spark.sql('select * from t where name regexp "%l|t|_"').show() +---+------+------+ |age|height| name| +---+------+------+ | 1| 150|Al_ice| | 4| 140| A%l%i| +---+------+------+
上述就是小編為大家分享的怎么在python中使用pandas進行模糊匹配了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。