91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

怎么在Java項目中實現一個矩陣乘法

發布時間:2021-02-04 16:12:40 來源:億速云 閱讀:170 作者:Leah 欄目:開發技術

本篇文章給大家分享的是有關怎么在Java項目中實現一個矩陣乘法,小編覺得挺實用的,因此分享給大家學習,希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。

矩陣乘法過程展示

C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1] + A[1][2] * B[2][1] + A[1][3] * B[3][1] + A[1][4] * B[4][1]

??而用Java實現該過程的傳統方法就是按照該規則實現一個三重循環,把各項乘積累加:

public int[][] multiply(int[][] mat1, int[][] mat2){
	int m = mat1.length, n = mat2[0].length;
	int[][] mat = new int[m][n];
	for(int i = 0; i < m; i++){
		for(int j = 0; j < n; j++){
			for(int k = 0; k < mat1[0].length; k++){
				mat[i][j] += mat1[i][k] * mat2[k][j];
			}
		}
	}
	return mat;
}

??可以看出該方法的時間復雜度為O(n3),當矩陣維數比較大的時候程序就很容易超時。

優化方法(Strassen算法)

??Strassen算法是由Volker Strassen在1966年提出的第一個時間復雜度低于O(n&sup3;)的矩陣乘法算法,其主要思想是通過分治來實現矩陣乘法的快速運算,計算過程如圖所示:

怎么在Java項目中實現一個矩陣乘法

將一次矩陣乘法拆分成多個乘法與加法的結合

??為什么這個方法會更快呢,我們知道,按照傳統的矩陣乘法:

C11 = A11 * B11 + A12 * B21
C12 = A11 * B12 + A12 * B22
C21 = A21 * B11 + A22 * B21
C22 = A21 * B12 + A22 * B22

??我們需要8次矩陣乘法和4次矩陣加法,正是這8次乘法最耗時;而Strassen方法只需要7次矩陣乘法,盡管代價是矩陣加法次數變為18次,但是基于數量級考慮,18次加法仍然快于1次乘法。

??當然,Strassen算法的代碼實現也比傳統算法復雜許多,這里附上另一個大神寫的java實現(原文鏈接:https://www.jb51.net/article/205375.htm):

public class Matrix {
	private final Matrix[] _matrixArray;
	private final int n;
	private int element;
	public Matrix(int n) {
		this.n = n;
		if (n != 1) {
			this._matrixArray = new Matrix[4];
			for (int i = 0; i < 4; i++) {
				this._matrixArray[i] = new Matrix(n / 2);
			}
		} else {
			this._matrixArray = null; 
		}
	}
	private Matrix(int n, boolean needInit) {
		this.n = n;
		if (n != 1) {
			this._matrixArray = new Matrix[4];
		} else {
			this._matrixArray = null; 
		}
	}
	public void set(int i, int j, int a) {
		if (n == 1) {
			element = a;
		} else {
			int size = n / 2;
			this._matrixArray[(i / size) * 2 + (j / size)].set(i % size, j % size, a);
		}
	}
	public Matrix multi(Matrix m) {
		Matrix result = null;
		if (n == 1) {
			result = new Matrix(1);
			result.set(0, 0, (element * m.element));
		} else {
			result = new Matrix(n, false);
			result._matrixArray[0] = P5(m).add(P4(m)).minus(P2(m)).add(P6(m));
			result._matrixArray[1] = P1(m).add(P2(m));
			result._matrixArray[2] = P3(m).add(P4(m));
			result._matrixArray[3] = P5(m).add(P1(m)).minus(P3(m)).minus(P7(m));
		}
		return result;
	}
	public Matrix add(Matrix m) {
		Matrix result = null;
		if (n == 1) {
			result = new Matrix(1);
			result.set(0, 0, (element + m.element));
		} else {
			result = new Matrix(n, false);
			result._matrixArray[0] = this._matrixArray[0].add(m._matrixArray[0]);
			result._matrixArray[1] = this._matrixArray[1].add(m._matrixArray[1]);
			result._matrixArray[2] = this._matrixArray[2].add(m._matrixArray[2]);
			result._matrixArray[3] = this._matrixArray[3].add(m._matrixArray[3]);;
		}
		return result;
	}
	public Matrix minus(Matrix m) {
		Matrix result = null;
		if (n == 1) {
			result = new Matrix(1);
			result.set(0, 0, (element - m.element));
		} else {
			result = new Matrix(n, false);
			result._matrixArray[0] = this._matrixArray[0].minus(m._matrixArray[0]);
			result._matrixArray[1] = this._matrixArray[1].minus(m._matrixArray[1]);
			result._matrixArray[2] = this._matrixArray[2].minus(m._matrixArray[2]);
			result._matrixArray[3] = this._matrixArray[3].minus(m._matrixArray[3]);;
		}
		return result;
	}
	protected Matrix P1(Matrix m) {
		return _matrixArray[0].multi(m._matrixArray[1]).minus(_matrixArray[0].multi(m._matrixArray[3]));
	}
	protected Matrix P2(Matrix m) {
		return _matrixArray[0].multi(m._matrixArray[3]).add(_matrixArray[1].multi(m._matrixArray[3]));
	}
	protected Matrix P3(Matrix m) {
		return _matrixArray[2].multi(m._matrixArray[0]).add(_matrixArray[3].multi(m._matrixArray[0]));
	}
	protected Matrix P4(Matrix m) {
		return _matrixArray[3].multi(m._matrixArray[2]).minus(_matrixArray[3].multi(m._matrixArray[0]));
	}
	protected Matrix P5(Matrix m) {
		return (_matrixArray[0].add(_matrixArray[3])).multi(m._matrixArray[0].add(m._matrixArray[3]));
	}
	protected Matrix P6(Matrix m) {
		return (_matrixArray[1].minus(_matrixArray[3])).multi(m._matrixArray[2].add(m._matrixArray[3]));
	}
	protected Matrix P7(Matrix m) {
		return (_matrixArray[0].minus(_matrixArray[2])).multi(m._matrixArray[0].add(m._matrixArray[1]));
	}
	public int get(int i, int j) {
		if (n == 1) {
			return element;
		} else {
			int size = n / 2;
			return this._matrixArray[(i / size) * 2 + (j / size)].get(i % size, j % size);
		}
	}
	public void display() {
		for (int i = 0; i < n; i++) {
			for (int j = 0; j < n; j++) {
				System.out.print(get(i, j));
				System.out.print(" ");
			}
			System.out.println();
		}
	}
	
	public static void main(String[] args) {
		Matrix m = new Matrix(2);
		Matrix n = new Matrix(2);
		m.set(0, 0, 1);
		m.set(0, 1, 3);
		m.set(1, 0, 5);
		m.set(1, 1, 7);
		n.set(0, 0, 8);
		n.set(0, 1, 4);
		n.set(1, 0, 6);
		n.set(1, 1, 2);
		Matrix res = m.multi(n);
		res.display();
	}
}

以上就是怎么在Java項目中實現一個矩陣乘法,小編相信有部分知識點可能是我們日常工作會見到或用到的。希望你能通過這篇文章學到更多知識。更多詳情敬請關注億速云行業資訊頻道。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

凌云县| 德安县| 武定县| 两当县| 清河县| 华坪县| 随州市| 鄂托克前旗| 德安县| 南澳县| 西盟| 秭归县| 榆树市| 美姑县| 调兵山市| 湘阴县| 女性| 呼玛县| 台前县| 手游| 昌平区| 体育| 融水| 改则县| 平罗县| 沙河市| 洱源县| 大理市| 团风县| 六安市| 冀州市| 宜川县| 利津县| 玉龙| 富源县| 霍山县| 曲阳县| 兰考县| 甘泉县| 如东县| 平塘县|