91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

linux 下c++線程池的簡單實現

發布時間:2021-03-04 14:26:34 來源:億速云 閱讀:203 作者:小新 欄目:編程語言

小編給大家分享一下linux 下c++線程池的簡單實現,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!

作為一個c++菜鳥,研究半天這個代碼的實現原理,發現好多語法不太熟悉,因此加了一大堆注釋,僅供參考。該段代碼主要通過繼承workthread類來實現自己的線程代碼,通過thread_pool類來管理線程池,線程池不能夠實現動態改變線程數目,存在一定局限性。目前可能還有缺陷,畢竟c++來封裝這個東西,資源釋放什么的必須想清楚,比如vector存儲了基類指針實現多態,那么如何釋放對象仍需要考慮,后續我可能會更進一步修改完善該代碼,下面貢獻一下自己的勞動成果。

#include <pthread.h>
#include <semaphore.h>
#include <iostream>
#include <vector>

using namespace std;
/*
WorkerThread class
This class needs to be sobclassed by the user.
*/
class WorkerThread{
public:
    int id;
    unsigned virtual executeThis()
	{
		return 0;
	}

    WorkerThread(int id) : id(id) {}
    virtual ~WorkerThread(){}
};

/*
ThreadPool class manages all the ThreadPool related activities. This includes keeping track of idle threads and synchronizations between all threads.
*/
class ThreadPool{
public:
    ThreadPool();
    ThreadPool(int maxThreadsTemp);
    virtual ~ThreadPool();
	
	void destroyPool(int maxPollSecs);

    bool assignWork(WorkerThread *worker);
    bool fetchWork(WorkerThread **worker);

	void initializeThreads();
	
    static void *threadExecute(void *param); // pthread_create()調用的函數必須為靜態的 
    static pthread_mutex_t mutexSync;
    static pthread_mutex_t mutexWorkCompletion;//工作完成個數互斥量
	
    
private:
    int maxThreads;
    
    pthread_cond_t  condCrit;
    sem_t availableWork;
    sem_t availableThreads;

    vector<WorkerThread *> workerQueue;

    int topIndex;
    int bottomIndex;
	int incompleteWork;
    int queueSize;
};
#include <stdlib.h>
#include "threadpool.h"
using namespace std;


//初始化類的靜態成員必須加上類型和作用域,static數據成員必須在類定義體的外部定義,不像不同數據成員可以用構造函數初始化
//應該在定義時進行初始化,注意是定義,這個定義應該放在包含類的非內聯成員函數定義的文件中。
//注:靜態成員函數只能使用靜態變量,非靜態沒有限制,靜態變量必須在外部定義和初始化,沒初始化就為默認數值
pthread_mutex_t ThreadPool::mutexSync = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t ThreadPool::mutexWorkCompletion = PTHREAD_MUTEX_INITIALIZER;


ThreadPool::ThreadPool()
{
	ThreadPool(2);
}

ThreadPool::ThreadPool(int maxThreads)
{
   if (maxThreads < 1)  
       maxThreads=1;
   
   pthread_mutex_lock(&mutexSync);
   this->maxThreads = maxThreads;
   this->queueSize = maxThreads;
   workerQueue.resize(maxThreads, NULL);//調整容器大小,然后用默認構造函數初始化新的空間
   topIndex = 0;
   bottomIndex = 0;
   incompleteWork = 0;
   sem_init(&availableWork, 0, 0); //工作隊列信號量,表示已經加入隊列的工作,初始時沒有工作
   sem_init(&availableThreads, 0, queueSize);  //空閑線程信號量,一開始就有quisize個線程可以使用
   pthread_mutex_unlock(&mutexSync);
}

//調用pthread_create()讓線程跑起來,threadExecute是類的靜態函數,因為pthread_create()第三個參數必須為靜態函數
void ThreadPool::initializeThreads()
{
   for(int i = 0; i<maxThreads; ++i)
	{
		pthread_t tempThread;
		pthread_create(&tempThread, NULL, ThreadPool::threadExecute, (void*)this );
   }
}

ThreadPool::~ThreadPool()
{
	//因為對于vector,clear并不真正釋放內存(這是為優化效率所做的事),clear實際所做的是為vector中所保存的所有對象調用析構函數(如果有的話),
	//然后初始化size這些東西,讓你覺得把所有的對象清除了。。。
    //真正釋放內存是在vector的析構函數里進行的,所以一旦超出vector的作用域(如函數返回),首先它所保存的所有對象會被析構,
	//然后會調用allocator中的deallocate函數回收對象本身的內存。。。
    workerQueue.clear();
}


void ThreadPool::destroyPool(int maxPollSecs = 2)
{
	while(incompleteWork>0 )
	{
	    //cout << "Work is still incomplete=" << incompleteWork << endl;
		sleep(maxPollSecs);
	}
	cout << "All Done!! Wow! That was a lot of work!" << endl;
	sem_destroy(&availableWork);
	sem_destroy(&availableThreads);
    pthread_mutex_destroy(&mutexSync);
    pthread_mutex_destroy(&mutexWorkCompletion);

}

//分配人物到top,然后通知有任務需要執行。
bool ThreadPool::assignWork(WorkerThread *workerThread)
{
    pthread_mutex_lock(&mutexWorkCompletion);
    incompleteWork++;
		//cout << "assignWork...incomapleteWork=" << incompleteWork << endl;
	pthread_mutex_unlock(&mutexWorkCompletion);
	sem_wait(&availableThreads);
	pthread_mutex_lock(&mutexSync);
    //workerVec[topIndex] = workerThread;
    workerQueue[topIndex] = workerThread;
    //cout << "Assigning Worker[" << workerThread->id << "] Address:[" << workerThread << "] to Queue index [" << topIndex << "]" << endl;
	if(queueSize !=1 )
		topIndex = (topIndex+1) % (queueSize-1);
    sem_post(&availableWork);
	pthread_mutex_unlock(&mutexSync);
	return true;
}

//當已經有人物放到隊列里面后,就會受到通知,然后從底部拿走工作,在workerArg中返回
bool ThreadPool::fetchWork(WorkerThread **workerArg)
{
	sem_wait(&availableWork);

	pthread_mutex_lock(&mutexSync);
	WorkerThread * workerThread = workerQueue[bottomIndex];
    workerQueue[bottomIndex] = NULL;
	*workerArg = workerThread;
	if(queueSize !=1 )
		bottomIndex = (bottomIndex+1) % (queueSize-1);
	sem_post(&availableThreads);
	pthread_mutex_unlock(&mutexSync);
    return true;
}

//每個線程運行的靜態函數實體,executeThis 方法將會被繼承累從寫,之后實現具體線程的工作。
void *ThreadPool::threadExecute(void *param)
{
	WorkerThread *worker = NULL;
	while(((ThreadPool *)param)->fetchWork(&worker))
	{
		if(worker)
        {
			worker->executeThis();
            //cout << "worker[" << worker->id << "]\tdelete address: [" << worker << "]" << endl;
            delete worker;
            worker = NULL;
        }

		pthread_mutex_lock( &(((ThreadPool *)param)->mutexWorkCompletion) );
        //cout << "Thread " << pthread_self() << " has completed a Job !" << endl;
	 	((ThreadPool *)param)->incompleteWork--;
		pthread_mutex_unlock( &(((ThreadPool *)param)->mutexWorkCompletion) );
	}
	return 0;
}
#include <iostream>
#include "threadpool.h"

using namespace std;


#define ITERATIONS 20

class SampleWorkerThread : public WorkerThread
{
public:
    int id;
	unsigned virtual executeThis()
	{
	// Instead of sleep() we could do anytime consuming work here.
	// Using ThreadPools is advantageous only when the work to be done is really time consuming. (atleast 1 or 2 seconds)
		cout<<"This is SampleWorkerThread sleep 2s"<<endl;
		sleep(2);
		return(0);
	}

    SampleWorkerThread(int id) : WorkerThread(id), id(id)
    {
//       cout << "Creating SampleWorkerThread " << id << "\t address=" << this << endl;
    }

    ~SampleWorkerThread()
    {
//       cout << "Deleting SampleWorkerThread " << id << "\t address=" << this << endl;
    }
};


int main(int argc, char **argv)
{
	
	cout<<"Thread pool"<<endl;
	ThreadPool* myPool = new ThreadPool(25);
	//pthread_create()執行,開始等待任務分配
	myPool->initializeThreads();

	//用來計算時間間隔。
    time_t t1=time(NULL);

	//分配具體工作到線程池
	for(unsigned int i=0;i<ITERATIONS;i++){
		SampleWorkerThread* myThreathreadExecuted = new SampleWorkerThread(i);
		myPool->assignWork(myThreathreadExecuted);
	}
	
	//銷毀錢等待所有線程結束,等待間隔為2秒。
    myPool->destroyPool(2);

    time_t t2=time(NULL);
    cout << t2-t1 << " seconds elapsed\n" << endl;
	delete myPool;
	
    return 0;
}

ubuntu 12.04下運行成功,編譯命令如下:g++ -g main.cpp thread_pool.cpp -o thread_pool -lpthread

以上是“linux 下c++線程池的簡單實現”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

荥阳市| 红桥区| 宜春市| 黎城县| 宁安市| 宁蒗| 文登市| 昌都县| 望都县| 永胜县| 芷江| 长春市| 广宁县| 庄浪县| 牡丹江市| 淮阳县| 岑溪市| 银川市| 庆城县| 大港区| 武定县| 轮台县| 沐川县| 常山县| 长汀县| 长海县| 石河子市| 西吉县| 栖霞市| 呼和浩特市| 张家界市| 长春市| 大理市| 赤峰市| 海南省| 定襄县| 崇州市| 疏勒县| 利津县| 从江县| 香格里拉县|