您好,登錄后才能下訂單哦!
今天就跟大家聊聊有關如何理解C++11中Lock,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結了以下內容,希望大家根據這篇文章可以有所收獲。
詳細介紹一下 C++11 標準的鎖類型。
C++11 標準為我們提供了兩種基本的鎖類型,分別如下:
std::lock_guard,與 Mutex RAII 相關,方便線程對互斥量上鎖。 std::unique_lock,與 Mutex RAII 相關,方便線程對互斥量上鎖,但提供了更好的上鎖和解鎖控制。
另外還提供了幾個與鎖類型相關的 Tag 類,分別如下:
std::adopt_lock_t,一個空的標記類,定義如下:
struct adopt_lock_t {};
該類型的常量對象adopt_lock(adopt_lock 是一個常量對象,定義如下:
constexpr adopt_lock_t adopt_lock {};,// constexpr 是 C++11 中的新關鍵字)
通常作為參數傳入給 unique_lock 或 lock_guard 的構造函數。
std::defer_lock_t,一個空的標記類,定義如下:
struct defer_lock_t {};
該類型的常量對象 defer_lock(defer_lock 是一個常量對象,定義如下:
constexpr defer_lock_t defer_lock {};,// constexpr 是 C++11 中的新關鍵字)
通常作為參數傳入給 unique_lock 或 lock_guard 的構造函數。
std::try_to_lock_t,一個空的標記類,定義如下:
struct try_to_lock_t {};
該類型的常量對象 try_to_lock(try_to_lock 是一個常量對象,定義如下:
constexpr try_to_lock_t try_to_lock {};,// constexpr 是 C++11 中的新關鍵字)
通常作為參數傳入給 unique_lock 或 lock_guard 的構造函數。后面我們會詳細介紹以上三種 Tag 類型在配合 lock_gurad 與 unique_lock 使用時的區別。
std::lock_guard 介紹
std::lock_gurad 是 C++11 中定義的模板類。定義如下:
template <class Mutex> class lock_guard;
lock_guard 對象通常用于管理某個鎖(Lock)對象,因此與 Mutex RAII 相關,方便線程對互斥量上鎖,即在某個 lock_guard 對象的聲明周期內,它所管理的鎖對象會一直保持上鎖狀態;而 lock_guard 的生命周期結束之后,它所管理的鎖對象會被解鎖(注:類似 shared_ptr 等智能指針管理動態分配的內存資源 )。
模板參數 Mutex 代表互斥量類型,例如 std::mutex 類型,它應該是一個基本的 BasicLockable 類型,標準庫中定義幾種基本的 BasicLockable 類型,分別 std::mutex, std::recursive_mutex, std::timed_mutex,std::recursive_timed_mutex (以上四種類型均已在上一篇博客中介紹)以及 std::unique_lock(本文后續會介紹 std::unique_lock)。(注:BasicLockable 類型的對象只需滿足兩種操作,lock 和 unlock,另外還有 Lockable 類型,在 BasicLockable 類型的基礎上新增了 try_lock 操作,因此一個滿足 Lockable 的對象應支持三種操作:lock,unlock 和 try_lock;最后還有一種 TimedLockable 對象,在 Lockable 類型的基礎上又新增了 try_lock_for 和 try_lock_until 兩種操作,因此一個滿足 TimedLockable 的對象應支持五種操作:lock, unlock, try_lock, try_lock_for, try_lock_until)。
在 lock_guard 對象構造時,傳入的 Mutex 對象(即它所管理的 Mutex 對象)會被當前線程鎖住。在lock_guard 對象被析構時,它所管理的 Mutex 對象會自動解鎖,由于不需要程序員手動調用 lock 和 unlock 對 Mutex 進行上鎖和解鎖操作,因此這也是最簡單安全的上鎖和解鎖方式,尤其是在程序拋出異常后先前已被上鎖的 Mutex 對象可以正確進行解鎖操作,極大地簡化了程序員編寫與 Mutex 相關的異常處理代碼。
值得注意的是,lock_guard 對象并不負責管理 Mutex 對象的生命周期,lock_guard 對象只是簡化了 Mutex 對象的上鎖和解鎖操作,方便線程對互斥量上鎖,即在某個 lock_guard 對象的聲明周期內,它所管理的鎖對象會一直保持上鎖狀態;而 lock_guard 的生命周期結束之后,它所管理的鎖對象會被解鎖。
std::lock_guard 構造函數
lock_guard 構造函數如下表所示:
explicit lock_guard (mutex_type& m);
lock_guard (mutex_type& m, adopt_lock_t tag);
lock_guard (const lock_guard&) = delete;
locking (1) | adopting (2) | copy [deleted](3) |
---|
locking 初始化lock_guard 對象管理 Mutex 對象 m,并在構造時對 m 進行上鎖(調用 m.lock())。
adopting初始化lock_guard 對象管理 Mutex 對象 m,與 locking 初始化(1) 不同的是, Mutex 對象 m 已被當前線程鎖住。
拷貝構造lock_guard 對象的拷貝構造和移動構造(move construction)均被禁用,因此 lock_guard 對象不可被拷貝構造或移動構造。
我們來看一個簡單的例子(參考):
#include <iostream> // std::cout#include <thread> // std::thread#include <mutex> // std::mutex, std::lock_guard, std::adopt_lockstd::mutex mtx; // mutex for critical sectionvoid print_thread_id (int id) { mtx.lock(); std::lock_guard<std::mutex> lck(mtx, std::adopt_lock); std::cout << "thread #" << id << '\n';}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(print_thread_id,i+1); for (auto& th : threads) th.join(); return 0;}
在 print_thread_id 中,我們首先對 mtx 進行上鎖操作(mtx.lock();),然后用 mtx 對象構造一個 lock_guard 對象(std::lock_guard<std::mutex> lck(mtx, std::adopt_lock);),注意此時 Tag 參數為 std::adopt_lock,表明當前線程已經獲得了鎖,此后 mtx 對象的解鎖操作交由 lock_guard 對象 lck 來管理,在 lck 的生命周期結束之后,mtx 對象會自動解鎖。lock_guard 最大的特點就是安全易于使用,請看下面例子(參考),在異常拋出的時候通過 lock_guard 對象管理的 Mutex 可以得到正確地解鎖。
#include <iostream> // std::cout#include <thread> // std::thread#include <mutex> // std::mutex, std::lock_guard#include <stdexcept> // std::logic_errorstd::mutex mtx;void print_even (int x) { if (x%2==0) std::cout << x << " is even\n"; else throw (std::logic_error("not even"));}void print_thread_id (int id) { try { // using a local lock_guard to lock mtx guarantees unlocking on destruction / exception: std::lock_guard<std::mutex> lck (mtx); print_even(id); } catch (std::logic_error&) { std::cout << "[exception caught]\n"; }}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(print_thread_id,i+1); for (auto& th : threads) th.join(); return 0;}
std::unique_lock 介紹
但是 lock_guard 最大的缺點也是簡單,沒有給程序員提供足夠的靈活度,因此,C++11 標準中定義了另外一個與 Mutex RAII 相關類 unique_lock,該類與 lock_guard 類相似,也很方便線程對互斥量上鎖,但它提供了更好的上鎖和解鎖控制。
顧名思義,unique_lock 對象以獨占所有權的方式( unique owership)管理 mutex 對象的上鎖和解鎖操作,所謂獨占所有權,就是沒有其他的 unique_lock 對象同時擁有某個 mutex 對象的所有權。
在構造(或移動(move)賦值)時,unique_lock 對象需要傳遞一個 Mutex 對象作為它的參數,新創建的 unique_lock 對象負責傳入的 Mutex 對象的上鎖和解鎖操作。
std::unique_lock 對象也能保證在其自身析構時它所管理的 Mutex 對象能夠被正確地解鎖(即使沒有顯式地調用 unlock 函數)。因此,和 lock_guard 一樣,這也是一種簡單而又安全的上鎖和解鎖方式,尤其是在程序拋出異常后先前已被上鎖的 Mutex 對象可以正確進行解鎖操作,極大地簡化了程序員編寫與 Mutex 相關的異常處理代碼。
值得注意的是,unique_lock 對象同樣也不負責管理 Mutex 對象的生命周期,unique_lock 對象只是簡化了 Mutex 對象的上鎖和解鎖操作,方便線程對互斥量上鎖,即在某個 unique_lock 對象的聲明周期內,它所管理的鎖對象會一直保持上鎖狀態;而 unique_lock 的生命周期結束之后,它所管理的鎖對象會被解鎖,這一點和 lock_guard 類似,但 unique_lock 給程序員提供了更多的自由,我會在下面的內容中給大家介紹 unique_lock 的用法。
另外,與 lock_guard 一樣,模板參數 Mutex 代表互斥量類型,例如 std::mutex 類型,它應該是一個基本的 BasicLockable 類型,標準庫中定義幾種基本的 BasicLockable 類型,分別 std::mutex, std::recursive_mutex, std::timed_mutex,std::recursive_timed_mutex (以上四種類型均已在上一篇博客中介紹)以及 std::unique_lock(本文后續會介紹 std::unique_lock)。(注:BasicLockable 類型的對象只需滿足兩種操作,lock 和 unlock,另外還有 Lockable 類型,在 BasicLockable 類型的基礎上新增了 try_lock 操作,因此一個滿足 Lockable 的對象應支持三種操作:lock,unlock 和 try_lock;最后還有一種 TimedLockable 對象,在 Lockable 類型的基礎上又新增了 try_lock_for 和 try_lock_until 兩種操作,因此一個滿足 TimedLockable 的對象應支持五種操作:lock, unlock, try_lock, try_lock_for, try_lock_until)。
std::unique_lock 構造函數
std::unique_lock 的構造函數的數目相對來說比 std::lock_guard 多,其中一方面也是因為 std::unique_lock 更加靈活,從而在構造 std::unique_lock 對象時可以接受額外的參數。總地來說,std::unique_lock 構造函數如下:
unique_lock() noexcept;
explicit unique_lock(mutex_type& m);
unique_lock(mutex_type& m, try_to_lock_t tag);
unique_lock(mutex_type& m, defer_lock_t tag) noexcept;
unique_lock(mutex_type& m, adopt_lock_t tag);
template <class Rep, class Period>unique_lock(mutex_type& m, const chrono::duration<Rep,Period>& rel_time);
template <class Clock, class Duration>unique_lock(mutex_type& m, const chrono::time_point<Clock,Duration>& abs_time);
unique_lock(const unique_lock&) = delete;
unique_lock(unique_lock&& x);
default (1) | locking (2) | try-locking (3) | deferred (4) | adopting (5) | locking for (6) | locking until (7) | copy [deleted] (8) | move (9) |
---|
下面我們來分別介紹以上各個構造函數:
(1) 默認構造函數新創建的 unique_lock 對象不管理任何 Mutex 對象。(2) locking 初始化新創建的 unique_lock 對象管理 Mutex 對象 m,并嘗試調用 m.lock() 對 Mutex 對象進行上鎖,如果此時另外某個 unique_lock 對象已經管理了該 Mutex 對象 m,則當前線程將會被阻塞。(3) try-locking 初始化新創建的 unique_lock 對象管理 Mutex 對象 m,并嘗試調用 m.try_lock() 對 Mutex 對象進行上鎖,但如果上鎖不成功,并不會阻塞當前線程。(4) deferred 初始化新創建的 unique_lock 對象管理 Mutex 對象 m,但是在初始化的時候并不鎖住 Mutex 對象。 m 應該是一個沒有當前線程鎖住的 Mutex 對象。(5) adopting 初始化新創建的 unique_lock 對象管理 Mutex 對象 m, m 應該是一個已經被當前線程鎖住的 Mutex 對象。(并且當前新創建的 unique_lock 對象擁有對鎖(Lock)的所有權)。(6) locking 一段時間(duration)新創建的 unique_lock 對象管理 Mutex 對象 m,并試圖通過調用 m.try_lock_for(rel_time) 來鎖住 Mutex 對象一段時間(rel_time)。(7) locking 直到某個時間點(time point)新創建的 unique_lock 對象管理 Mutex 對象m,并試圖通過調用 m.try_lock_until(abs_time) 來在某個時間點(abs_time)之前鎖住 Mutex 對象。(8) 拷貝構造 [被禁用]unique_lock 對象不能被拷貝構造。(9) 移動(move)構造新創建的 unique_lock 對象獲得了由 x 所管理的 Mutex 對象的所有權(包括當前 Mutex 的狀態)。調用 move 構造之后, x 對象如同通過默認構造函數所創建的,就不再管理任何 Mutex 對象了。綜上所述,由 (2) 和 (5) 創建的 unique_lock 對象通常擁有 Mutex 對象的鎖。而通過 (1) 和 (4) 創建的則不會擁有鎖。通過 (3),(6) 和 (7) 創建的 unique_lock 對象,則在 lock 成功時獲得鎖。
關于unique_lock 的構造函數,請看下面例子(參考):
#include <iostream> // std::cout#include <thread> // std::thread#include <mutex> // std::mutex, std::lock, std::unique_lock // std::adopt_lock, std::defer_lockstd::mutex foo,bar;void task_a () { std::lock (foo,bar); // simultaneous lock (prevents deadlock) std::unique_lock<std::mutex> lck1 (foo,std::adopt_lock); std::unique_lock<std::mutex> lck2 (bar,std::adopt_lock); std::cout << "task a\n"; // (unlocked automatically on destruction of lck1 and lck2)}void task_b () { // foo.lock(); bar.lock(); // replaced by: std::unique_lock<std::mutex> lck1, lck2; lck1 = std::unique_lock<std::mutex>(bar,std::defer_lock); lck2 = std::unique_lock<std::mutex>(foo,std::defer_lock); std::lock (lck1,lck2); // simultaneous lock (prevents deadlock) std::cout << "task b\n"; // (unlocked automatically on destruction of lck1 and lck2)}int main (){ std::thread th2 (task_a); std::thread th3 (task_b); th2.join(); th3.join(); return 0;}
std::unique_lock 移動(move assign)賦值操作
std::unique_lock 支持移動賦值(move assignment),但是普通的賦值被禁用了,
unique_lock& operator= (unique_lock&& x) noexcept;
unique_lock& operator= (const unique_lock&) = delete;
move (1) | copy [deleted] (2) |
---|
移動賦值(move assignment)之后,由 x 所管理的 Mutex 對象及其狀態將會被新的 std::unique_lock 對象取代。
如果被賦值的對象之前已經獲得了它所管理的 Mutex 對象的鎖,則在移動賦值(move assignment)之前會調用 unlock 函數釋放它所占有的鎖。
調用移動賦值(move assignment)之后, x 對象如同通過默認構造函數所創建的,也就不再管理任何 Mutex 對象了。請看下面例子(參考):
#include <iostream> // std::cout#include <thread> // std::thread#include <mutex> // std::mutex, std::unique_lockstd::mutex mtx; // mutex for critical sectionvoid print_fifty (char c) { std::unique_lock<std::mutex> lck; // default-constructed lck = std::unique_lock<std::mutex>(mtx); // move-assigned for (int i=0; i<50; ++i) { std::cout << c; } std::cout << '\n';}int main (){ std::thread th2 (print_fifty,'*'); std::thread th3 (print_fifty,'$'); th2.join(); th3.join(); return 0;}
std::unique_lock 主要成員函數
本節我們來看看 std::unique_lock 的主要成員函數。由于 std::unique_lock 比 std::lock_guard 操作靈活,因此它提供了更多成員函數。具體分類如下:
上鎖/解鎖操作:lock,try_lock,try_lock_for,try_lock_until 和 unlock 修改操作:移動賦值(move assignment)(前面已經介紹過了),交換(swap)(與另一個 std::unique_lock 對象交換它們所管理的 Mutex 對象的所有權),釋放(release)(返回指向它所管理的 Mutex 對象的指針,并釋放所有權) 獲取屬性操作:owns_lock(返回當前 std::unique_lock 對象是否獲得了鎖)、operator bool()(與 owns_lock 功能相同,返回當前 std::unique_lock 對象是否獲得了鎖)、mutex(返回當前 std::unique_lock 對象所管理的 Mutex 對象的指針)。
std::unique_lock::lock請看下面例子(參考):
上鎖操作,調用它所管理的 Mutex 對象的 lock 函數。如果在調用 Mutex 對象的 lock 函數時該 Mutex 對象已被另一線程鎖住,則當前線程會被阻塞,直到它獲得了鎖。
該函數返回時,當前的 unique_lock 對象便擁有了它所管理的 Mutex 對象的鎖。如果上鎖操作失敗,則拋出 system_error 異常。
// unique_lock::lock/unlock#include <iostream> // std::cout#include <thread> // std::thread#include <mutex> // std::mutex, std::unique_lock, std::defer_lockstd::mutex mtx; // mutex for critical sectionvoid print_thread_id (int id) { std::unique_lock<std::mutex> lck (mtx,std::defer_lock); // critical section (exclusive access to std::cout signaled by locking lck): lck.lock(); std::cout << "thread #" << id << '\n'; lck.unlock();}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(print_thread_id,i+1); for (auto& th : threads) th.join(); return 0;}
std::unique_lock::try_lock
上鎖操作,調用它所管理的 Mutex 對象的 try_lock 函數,如果上鎖成功,則返回 true,否則返回 false。
請看下面例子(參考):
#include <iostream> // std::cout#include <vector> // std::vector#include <thread> // std::thread#include <mutex> // std::mutex, std::unique_lock, std::defer_lockstd::mutex mtx; // mutex for critical sectionvoid print_star () { std::unique_lock<std::mutex> lck(mtx,std::defer_lock); // print '*' if successfully locked, 'x' otherwise: if (lck.try_lock()) std::cout << '*'; else std::cout << 'x';}int main (){ std::vector<std::thread> threads; for (int i=0; i<500; ++i) threads.emplace_back(print_star); for (auto& x: threads) x.join(); return 0;}
std::unique_lock::try_lock_for
上鎖操作,調用它所管理的 Mutex 對象的 try_lock_for 函數,如果上鎖成功,則返回 true,否則返回 false。
請看下面例子(參考):
#include <iostream> // std::cout#include <chrono> // std::chrono::milliseconds#include <thread> // std::thread#include <mutex> // std::timed_mutex, std::unique_lock, std::defer_lockstd::timed_mutex mtx;void fireworks () { std::unique_lock<std::timed_mutex> lck(mtx,std::defer_lock); // waiting to get a lock: each thread prints "-" every 200ms: while (!lck.try_lock_for(std::chrono::milliseconds(200))) { std::cout << "-"; } // got a lock! - wait for 1s, then this thread prints "*" std::this_thread::sleep_for(std::chrono::milliseconds(1000)); std::cout << "*\n";}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(fireworks); for (auto& th : threads) th.join(); return 0;}
std::unique_lock::try_lock_until
上鎖操作,調用它所管理的 Mutex 對象的 try_lock_for 函數,如果上鎖成功,則返回 true,否則返回 false。
請看下面例子(參考):
#include <iostream> // std::cout#include <chrono> // std::chrono::milliseconds#include <thread> // std::thread#include <mutex> // std::timed_mutex, std::unique_lock, std::defer_lockstd::timed_mutex mtx;void fireworks () { std::unique_lock<std::timed_mutex> lck(mtx,std::defer_lock); // waiting to get a lock: each thread prints "-" every 200ms: while (!lck.try_lock_for(std::chrono::milliseconds(200))) { std::cout << "-"; } // got a lock! - wait for 1s, then this thread prints "*" std::this_thread::sleep_for(std::chrono::milliseconds(1000)); std::cout << "*\n";}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(fireworks); for (auto& th : threads) th.join(); return 0;}
std::unique_lock::unlock
解鎖操作,調用它所管理的 Mutex 對象的 unlock 函數。
請看下面例子(參考):
#include <iostream> // std::cout#include <thread> // std::thread#include <mutex> // std::mutex, std::unique_lock, std::defer_lockstd::mutex mtx; // mutex for critical sectionvoid print_thread_id (int id) { std::unique_lock<std::mutex> lck (mtx,std::defer_lock); // critical section (exclusive access to std::cout signaled by locking lck): lck.lock(); std::cout << "thread #" << id << '\n'; lck.unlock();}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(print_thread_id,i+1); for (auto& th : threads) th.join(); return 0;}
std::unique_lock::release
返回指向它所管理的 Mutex 對象的指針,并釋放所有權。
請看下面例子(參考):
#include <iostream> // std::cout#include <vector> // std::vector#include <thread> // std::thread#include <mutex> // std::mutex, std::unique_lockstd::mutex mtx;int count = 0;void print_count_and_unlock (std::mutex* p_mtx) { std::cout << "count: " << count << '\n'; p_mtx->unlock();}void task() { std::unique_lock<std::mutex> lck(mtx); ++count; print_count_and_unlock(lck.release());}int main (){ std::vector<std::thread> threads; for (int i=0; i<10; ++i) threads.emplace_back(task); for (auto& x: threads) x.join(); return 0;}
std::unique_lock::owns_lock
返回當前 std::unique_lock 對象是否獲得了鎖。
請看下面例子(參考):
#include <iostream> // std::cout#include <vector> // std::vector#include <thread> // std::thread#include <mutex> // std::mutex, std::unique_lock, std::try_to_lockstd::mutex mtx; // mutex for critical sectionvoid print_star () { std::unique_lock<std::mutex> lck(mtx,std::try_to_lock); // print '*' if successfully locked, 'x' otherwise: if (lck.owns_lock()) std::cout << '*'; else std::cout << 'x';}int main (){ std::vector<std::thread> threads; for (int i=0; i<500; ++i) threads.emplace_back(print_star); for (auto& x: threads) x.join(); return 0;}
std::unique_lock::operator bool()
與 owns_lock 功能相同,返回當前 std::unique_lock 對象是否獲得了鎖。
請看下面例子(參考):
#include <iostream> // std::cout#include <vector> // std::vector#include <thread> // std::thread#include <mutex> // std::mutex, std::unique_lock, std::try_to_lockstd::mutex mtx; // mutex for critical sectionvoid print_star () { std::unique_lock<std::mutex> lck(mtx,std::try_to_lock); // print '*' if successfully locked, 'x' otherwise: if (lck) std::cout << '*'; else std::cout << 'x';}int main (){ std::vector<std::thread> threads; for (int i=0; i<500; ++i) threads.emplace_back(print_star); for (auto& x: threads) x.join(); return 0;}
std::unique_lock::mutex
返回當前 std::unique_lock 對象所管理的 Mutex 對象的指針。
請看下面例子(參考):
#include <iostream> // std::cout#include <thread> // std::thread#include <mutex> // std::mutex, std::unique_lock, std::defer_lockclass MyMutex : public std::mutex { int _id;public: MyMutex (int id) : _id(id) {} int id() {return _id;}};MyMutex mtx (101);void print_ids (int id) { std::unique_lock<MyMutex> lck (mtx); std::cout << "thread #" << id << " locked mutex " << lck.mutex()->id() << '\n';}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(print_ids,i+1); for (auto& th : threads) th.join(); return 0;}
看完上述內容,你們對如何理解C++11中Lock有進一步的了解嗎?如果還想了解更多知識或者相關內容,請關注億速云行業資訊頻道,感謝大家的支持。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。