91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

C#中怎么實現一個數獨求解算法

發布時間:2021-07-08 15:40:41 來源:億速云 閱讀:126 作者:Leah 欄目:編程語言

C#中怎么實現一個數獨求解算法,針對這個問題,這篇文章詳細介紹了相對應的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。

1、先尋找并填寫那些唯一數單元格。在部分數獨中有些單元格會因為同行、列、宮內題目已知數的限制,實際只有一個數可以填,這種單元格就應該趁早填好,因為沒有嘗試的必要,不提前處理掉還會影響之后求解的效率。在填寫數字后,同行、列、宮的候選數就會減少,可能會出現新的唯一數單元格,那么繼續填寫,直到沒有唯一數單元格為止。

2、檢查是否已經完成游戲,也就是所有單元格都有數字。部分簡單數獨一直填唯一數單元格就可以完成游戲。

3、按照單元格從左到右、從上到下,數字從小到大的順序嘗試填寫有多個候選數的單元格,直到全部填完或者發現有單元格候選數為空。如果出現無候選數的單元格說明之前填錯數導致出現死路,就需要悔步清除上一個單元格填過的數,換成下一個候選數繼續嘗試。如果清除后發現沒有更大的候選數可填,說明更早之前就已經填錯了,要繼續悔步并換下一個候選數。有可能需要連續悔多步,一直悔步直到有更大的候選數可填的單元格。如果一路到最開始的單元格都沒法填,說明這個數獨有問題,無解。

代碼(包括數獨求解器,求解過程信息,答案存儲三個主要類):

數獨求解器

public class SudokuSolver {  /// <summary>  /// 題目面板  /// </summary>  public SudokuBlock[][] SudokuBoard { get; }  public SudokuSolver(byte[][] board)  {   SudokuBoard = new SudokuBlock[board.Length][];   //初始化數獨的行   for (int i = 0; i < board.Length; i++)   {    SudokuBoard[i] = new SudokuBlock[board[i].Length];    //初始化每行的列    for (int j = 0; j < board[i].Length; j++)    {     SudokuBoard[i][j] = new SudokuBlock(      board[i][j] > 0      , board[i][j] <= 0 ? new BitArray(board.Length) : null      , board[i][j] > 0 ? (byte?)board[i][j] : null      , (byte)i      , (byte)j);    }   }  }  /// <summary>  /// 求解數獨  /// </summary>  /// <returns>獲得的解</returns>  public IEnumerable<(SudokuState sudoku, PathTree path)> Solve(bool multiAnswer = false)  {   //初始化各個單元格能填入的數字   InitCandidate();   var pathRoot0 = new PathTree(null, -1, -1, -1); //填寫路徑樹,在非遞歸方法中用于記錄回退路徑和其他有用信息,初始生成一個根   var path0 = pathRoot0;   //循環填入能填入的數字只有一個的單元格,每次填入都可能產生新的唯一數單元格,直到沒有唯一數單元格可填   while (true)   {    if (!FillUniqueNumber(ref path0))    {     break;    }   }   //檢查是否在填唯一數單元格時就已經把所有單元格填滿了   var finish = true;   foreach (var row in SudokuBoard)   {    foreach (var cell in row)    {     if (!cell.IsCondition && !cell.IsUnique)     {      finish = false;      break;     }    }    if (!finish)    {     break;    }   }   if (finish)   {    yield return (new SudokuState(this), path0);    yield break;   }   var pathRoot = new PathTree(null, -1, -1, -1); //填寫路徑樹,在非遞歸方法中用于記錄回退路徑和其他有用信息,初始生成一個根   var path = pathRoot;   var toRe = new List<(SudokuState sudoku, PathTree path)>();   //還存在需要試數才能求解的單元格,開始暴力搜索   int i = 0, j = 0;   while (true)   {    (i, j) = NextBlock(i, j);    //正常情況下返回-1表示已經全部填完    if (i == -1 && j == -1 && !multiAnswer)    {     var pathLast = path;//記住最后一步     var path2 = path;     while(path2.Parent.X != -1 && path2.Parent.Y != -1)     {      path2 = path2.Parent;     }     //將暴力搜索的第一步追加到唯一數單元格的填寫步驟的最后一步之后,連接成完整的填數步驟     path0.Children.Add(path2);     path2.Parent = path0;     yield return (new SudokuState(this), pathLast);     break;    }    var numNode = path.Children.LastOrDefault();    //確定要從哪個數開始進行填入嘗試    var num = numNode == null     ? 0     : numNode.Number;    bool filled = false; //是否發現可以填入的數    //循環查看從num開始接下來的候選數是否能填(num是最后一次填入的數,傳到Candidate[]的索引器中剛好指向 num + 1是否能填的存儲位,對于標準數獨,候選數為 1~9,Candidate的索引范圍就是 0~8)    for (; !SudokuBoard[i][j].IsCondition && !SudokuBoard[i][j].IsUnique && num < SudokuBoard[i][j].Candidate.Length; num++)    {     //如果有可以填的候選數,理論上不會遇見沒有可以填的情況,這種死路情況已經在UpdateCandidate時檢查了     if (SudokuBoard[i][j].Candidate[num] && !path.Children.Any(x => x.Number - 1 == num && !x.Pass))     {      filled = true; //進來了說明單元格有數可以填      //記錄步驟      var node = new PathTree(SudokuBoard[i][j], i, j, num + 1, path);      path = node;      //如果更新相關單元格的候選數時發現死路(更新函數會在發現死路時自動撤銷更新)      (bool canFill, (byte x, byte y)[] setList) updateResult = UpdateCandidate(i, j, (byte)(num + 1));      if (!updateResult.canFill)      {       //記錄這條路是死路       path.SetPass(false);      }      //僅在確認是活路時設置填入數字      if (path.Pass)      {       SudokuBoard[i][j].SetNumber((byte)(num + 1));       path.SetList = updateResult.setList;//記錄相關單元格可填數更新記錄,方便在回退時撤銷更新      }      else //出現死路,要進行回退,重試這個單元格的其他可填數字      {       path.Block.SetNumber(null);       path = path.Parent;      }      //填入一個候選數后跳出循環,不再繼續嘗試填入之后的候選數      break;     }    }    if (!filled)//如果沒有成功填入數字,說明上一步填入的單元格就是錯的,會導致后面的單元格怎么填都不對,要回退到上一個單元格重新填    {     path.SetPass(false);     path.Block.SetNumber(null);     foreach (var pos in path.SetList)     {      SudokuBoard[pos.x][pos.y].Candidate.Set(path.Number - 1, true);     }     path = path.Parent;     i = path.X < 0 ? 0 : path.X;     j = path.Y < 0 ? 0 : path.Y;    }   }  }  /// <summary>  /// 初始化候選項  /// </summary>  private void InitCandidate()  {   //初始化每行空缺待填的數字   var rb = new List<BitArray>();   for (int i = 0; i < SudokuBoard.Length; i++)   {    var r = new BitArray(SudokuBoard.Length);    r.SetAll(true);    for (int j = 0; j < SudokuBoard[i].Length; j++)    {     //如果i行j列是條件(題目)給出的數,設置數字不能再填(r[x] == false 表示 i 行不能再填 x + 1,下標加1表示數獨可用的數字,下標對應的值表示下標加1所表示的數是否還能填入該行)     if (SudokuBoard[i][j].IsCondition || SudokuBoard[i][j].IsUnique)     {      r.Set(SudokuBoard[i][j].Number.Value - 1, false);     }    }    rb.Add(r);   }   //初始化每列空缺待填的數字   var cb = new List<BitArray>();   for (int j = 0; j < SudokuBoard[0].Length; j++)   {    var c = new BitArray(SudokuBoard[0].Length);    c.SetAll(true);    for (int i = 0; i < SudokuBoard.Length; i++)    {     if (SudokuBoard[i][j].IsCondition || SudokuBoard[i][j].IsUnique)     {      c.Set(SudokuBoard[i][j].Number.Value - 1, false);     }    }    cb.Add(c);   }   //初始化每宮空缺待填的數字(目前只能算標準 n×n 數獨的宮)   var gb = new List<BitArray>();   //n表示每宮應有的行、列數(標準數獨行列、數相同)   var n = (int)Sqrt(SudokuBoard.Length);   for (int g = 0; g < SudokuBoard.Length; g++)   {    var gba = new BitArray(SudokuBoard.Length);    gba.SetAll(true);    for (int i = g / n * n; i < g / n * n + n; i++)    {     for (int j = g % n * n; j < g % n * n + n; j++)     {      if (SudokuBoard[i][j].IsCondition || SudokuBoard[i][j].IsUnique)      {       gba.Set(SudokuBoard[i][j].Number.Value - 1, false);      }     }    }    gb.Add(gba);   }   //初始化每格可填的候選數字   for (int i = 0; i < SudokuBoard.Length; i++)   {    for (int j = 0; j < SudokuBoard[i].Length; j++)    {     if (!SudokuBoard[i][j].IsCondition)     {      var c = SudokuBoard[i][j].Candidate;      c.SetAll(true);      //當前格能填的數為其所在行、列、宮同時空缺待填的數字,按位與運算后只有同時能填的候選數保持1(可填如當前格),否則變成0      // i / n * n + j / n:根據行號列號計算宮號,      c = c.And(rb[i]).And(cb[j]).And(gb[i / n * n + j / n]);      SudokuBoard[i][j].SetCandidate(c);     }    }   }  }  /// <summary>  /// 求解開始時尋找并填入單元格唯一可填的數,減少解空間  /// </summary>  /// <returns>是否填入過數字,如果為false,表示能立即確定待填數字的單元格已經沒有,要開始暴力搜索了</returns>  private bool FillUniqueNumber(ref PathTree path)  {   var filled = false;   for (int i = 0; i < SudokuBoard.Length; i++)   {    for (int j = 0; j < SudokuBoard[i].Length; j++)    {     if (!SudokuBoard[i][j].IsCondition && !SudokuBoard[i][j].IsUnique)     {      var canFillCount = 0;      var index = -1;      for (int k = 0; k < SudokuBoard[i][j].Candidate.Length; k++)      {       if (SudokuBoard[i][j].Candidate[k])       {        index = k;        canFillCount++;       }       if (canFillCount > 1)       {        break;       }      }      if (canFillCount == 0)      {       throw new Exception("有單元格無法填入任何數字,數獨無解");      }      if (canFillCount == 1)      {       var num = (byte)(index + 1);       SudokuBoard[i][j].SetNumber(num);       SudokuBoard[i][j].SetUnique();       filled = true;       var upRes = UpdateCandidate(i, j, num);       if (!upRes.canFill)       {        throw new Exception("有單元格無法填入任何數字,數獨無解");       }       path = new PathTree(SudokuBoard[i][j], i, j, num, path);       path.SetList = upRes.setList;      }     }    }   }   return filled;  }  /// <summary>  /// 更新單元格所在行、列、宮的其它單元格能填的數字候選,如果沒有,會撤銷更新  /// </summary>  /// <param name="row">行號</param>  /// <param name="column">列號</param>  /// <param name="canNotFillNumber">要剔除的候選數字</param>  /// <returns>更新候選數后,所有被更新的單元格是否都有可填的候選數字</returns>  private (bool canFill, (byte x, byte y)[] setList) UpdateCandidate(int row, int column, byte canNotFillNumber)  {   var canFill = true;   var list = new List<SudokuBlock>(); // 記錄修改過的單元格,方便撤回修改   bool CanFillNumber(int i, int j)   {    var re = true;    var _canFill = false;    for (int k = 0; k < SudokuBoard[i][j].Candidate.Length; k++)    {     if (SudokuBoard[i][j].Candidate[k])     {      _canFill = true;      break;     }    }    if (!_canFill)    {     re = false;    }    return re;   }   bool Update(int i, int j)   {    if (!(i == row && j == column) && !SudokuBoard[i][j].IsCondition && !SudokuBoard[i][j].IsUnique && SudokuBoard[i][j].Candidate[canNotFillNumber - 1])    {     SudokuBoard[i][j].Candidate.Set(canNotFillNumber - 1, false);     list.Add(SudokuBoard[i][j]);     return CanFillNumber(i, j);    }    else    {     return true;    }   }   //更新該行其余列   for (int j = 0; j < SudokuBoard[row].Length; j++)   {    canFill = Update(row, j);    if (!canFill)    {     break;    }   }   if (canFill) //只在行更新時沒發現無數可填的單元格時進行列更新才有意義   {    //更新該列其余行    for (int i = 0; i < SudokuBoard.Length; i++)    {     canFill = Update(i, column);     if (!canFill)     {      break;     }    }   }   if (canFill)//只在行、列更新時都沒發現無數可填的單元格時進行宮更新才有意義   {    //更新該宮其余格    //n表示每宮應有的行、列數(標準數獨行列、數相同)    var n = (int)Sqrt(SudokuBoard.Length);    //g為宮的編號,根據行號列號計算    var g = row / n * n + column / n;    for (int i = g / n * n; i < g / n * n + n; i++)    {     for (int j = g % n * n; j < g % n * n + n; j++)     {      canFill = Update(i, j);      if (!canFill)      {       goto canNotFill;      }     }    }    canNotFill:;   }   //如果發現存在沒有任何數字可填的單元格,撤回所有候選修改   if (!canFill)   {    foreach (var cell in list)    {     cell.Candidate.Set(canNotFillNumber - 1, true);    }   }   return (canFill, list.Select(x => (x.X, x.Y)).ToArray());  }  /// <summary>  /// 尋找下一個要嘗試填數的格  /// </summary>  /// <param name="i">起始行號</param>  /// <param name="j">起始列號</param>  /// <returns>找到的下一個行列號,沒有找到返回-1</returns>  private (int x, int y) NextBlock(int i = 0, int j = 0)  {   for (; i < SudokuBoard.Length; i++)   {    for (; j < SudokuBoard[i].Length; j++)    {     if (!SudokuBoard[i][j].IsCondition && !SudokuBoard[i][j].IsUnique && !SudokuBoard[i][j].Number.HasValue)     {      return (i, j);     }    }    j = 0;   }   return (-1, -1);  }  public override string ToString()  {   static string Str(SudokuBlock b)   {    var n1 = new[] { "①", "②", "③", "④", "⑤", "⑥", "⑦", "⑧", "⑨" };    var n2 = new[] { "⑴", "⑵", "⑶", "⑷", "⑸", "⑹", "⑺", "⑻", "⑼" };    return b.Number.HasValue     ? b.IsCondition      ? " " + b.Number      : b.IsUnique       ? n1[b.Number.Value - 1]       : n2[b.Number.Value - 1]     : "?";   }   return$@"{Str(SudokuBoard[0][0])},{Str(SudokuBoard[0][1])},{Str(SudokuBoard[0][2])},{Str(SudokuBoard[0][3])},{Str(SudokuBoard[0][4])},{Str(SudokuBoard[0][5])},{Str(SudokuBoard[0][6])},{Str(SudokuBoard[0][7])},{Str(SudokuBoard[0][8])}{Str(SudokuBoard[1][0])},{Str(SudokuBoard[1][1])},{Str(SudokuBoard[1][2])},{Str(SudokuBoard[1][3])},{Str(SudokuBoard[1][4])},{Str(SudokuBoard[1][5])},{Str(SudokuBoard[1][6])},{Str(SudokuBoard[1][7])},{Str(SudokuBoard[1][8])}{Str(SudokuBoard[2][0])},{Str(SudokuBoard[2][1])},{Str(SudokuBoard[2][2])},{Str(SudokuBoard[2][3])},{Str(SudokuBoard[2][4])},{Str(SudokuBoard[2][5])},{Str(SudokuBoard[2][6])},{Str(SudokuBoard[2][7])},{Str(SudokuBoard[2][8])}{Str(SudokuBoard[3][0])},{Str(SudokuBoard[3][1])},{Str(SudokuBoard[3][2])},{Str(SudokuBoard[3][3])},{Str(SudokuBoard[3][4])},{Str(SudokuBoard[3][5])},{Str(SudokuBoard[3][6])},{Str(SudokuBoard[3][7])},{Str(SudokuBoard[3][8])}{Str(SudokuBoard[4][0])},{Str(SudokuBoard[4][1])},{Str(SudokuBoard[4][2])},{Str(SudokuBoard[4][3])},{Str(SudokuBoard[4][4])},{Str(SudokuBoard[4][5])},{Str(SudokuBoard[4][6])},{Str(SudokuBoard[4][7])},{Str(SudokuBoard[4][8])}{Str(SudokuBoard[5][0])},{Str(SudokuBoard[5][1])},{Str(SudokuBoard[5][2])},{Str(SudokuBoard[5][3])},{Str(SudokuBoard[5][4])},{Str(SudokuBoard[5][5])},{Str(SudokuBoard[5][6])},{Str(SudokuBoard[5][7])},{Str(SudokuBoard[5][8])}{Str(SudokuBoard[6][0])},{Str(SudokuBoard[6][1])},{Str(SudokuBoard[6][2])},{Str(SudokuBoard[6][3])},{Str(SudokuBoard[6][4])},{Str(SudokuBoard[6][5])},{Str(SudokuBoard[6][6])},{Str(SudokuBoard[6][7])},{Str(SudokuBoard[6][8])}{Str(SudokuBoard[7][0])},{Str(SudokuBoard[7][1])},{Str(SudokuBoard[7][2])},{Str(SudokuBoard[7][3])},{Str(SudokuBoard[7][4])},{Str(SudokuBoard[7][5])},{Str(SudokuBoard[7][6])},{Str(SudokuBoard[7][7])},{Str(SudokuBoard[7][8])}{Str(SudokuBoard[8][0])},{Str(SudokuBoard[8][1])},{Str(SudokuBoard[8][2])},{Str(SudokuBoard[8][3])},{Str(SudokuBoard[8][4])},{Str(SudokuBoard[8][5])},{Str(SudokuBoard[8][6])},{Str(SudokuBoard[8][7])},{Str(SudokuBoard[8][8])}";  } }

大多數都有注釋,配合注釋應該不難理解,如有問題歡迎評論區交流。稍微說一下,重載ToString是為了方便調試和查看狀態,其中空心方框表示未填寫數字的單元格,數字表示題目給出數字的單元格,圈數字表示唯一數單元格填寫的數字,括號數字表示有多個候選數通過嘗試(暴力搜索)確定的數字。注意類文件最上面有一個using static System.Math; 導入靜態類,不然每次調用數學函數都要 Math. ,很煩。

求解過程信息

public class PathTree {  public PathTree Parent { get; set; }  public List<PathTree> Children { get; } = new List<PathTree>();  public SudokuBlock Block { get; }  public int X { get; }  public int Y { get; }  public int Number { get; }  public bool Pass { get; private set; } = true;  public (byte x, byte y)[] SetList { get; set; }  public PathTree(SudokuBlock block, int x, int y, int number)  {   Block = block;   X = x;   Y = y;   Number = number;  }  public PathTree(SudokuBlock block, int row, int column, int number, PathTree parent)   : this(block, row, column, number)  {   Parent = parent;   Parent.Children.Add(this);  }  public void SetPass(bool pass)  {   Pass = pass;  } }

其中記錄了每個步驟在哪個單元格填寫了哪個數字,上一步是哪一步,之后嘗試過哪些步驟,這一步是否會導致之后的步驟出現死路,填寫數字后影響到的單元格和候選數字(用來在悔步的時候恢復相應單元格的候選數字)。

答案存儲

public class SudokuState {  public SudokuBlock[][] SudokuBoard { get; }  public SudokuState(SudokuSolver sudoku)  {   SudokuBoard = new SudokuBlock[sudoku.SudokuBoard.Length][];   //初始化數獨的行   for (int i = 0; i < sudoku.SudokuBoard.Length; i++)   {    SudokuBoard[i] = new SudokuBlock[sudoku.SudokuBoard[i].Length];    //初始化每行的列    for (int j = 0; j < sudoku.SudokuBoard[i].Length; j++)    {     SudokuBoard[i][j] = new SudokuBlock(      sudoku.SudokuBoard[i][j].IsCondition      , null      , sudoku.SudokuBoard[i][j].Number      , (byte)i      , (byte)j);     if (sudoku.SudokuBoard[i][j].IsUnique)     {      SudokuBoard[i][j].SetUnique();     }    }   }  }  public override string ToString()  {   static string Str(SudokuBlock b)   {    var n1 = new[] { "①", "②", "③", "④", "⑤", "⑥", "⑦", "⑧", "⑨" };    var n2 = new[] { "⑴", "⑵", "⑶", "⑷", "⑸", "⑹", "⑺", "⑻", "⑼" };    return b.Number.HasValue     ? b.IsCondition      ? " " + b.Number      : b.IsUnique       ? n1[b.Number.Value - 1]       : n2[b.Number.Value - 1]     : "?";   }   return$@"{Str(SudokuBoard[0][0])},{Str(SudokuBoard[0][1])},{Str(SudokuBoard[0][2])},{Str(SudokuBoard[0][3])},{Str(SudokuBoard[0][4])},{Str(SudokuBoard[0][5])},{Str(SudokuBoard[0][6])},{Str(SudokuBoard[0][7])},{Str(SudokuBoard[0][8])}{Str(SudokuBoard[1][0])},{Str(SudokuBoard[1][1])},{Str(SudokuBoard[1][2])},{Str(SudokuBoard[1][3])},{Str(SudokuBoard[1][4])},{Str(SudokuBoard[1][5])},{Str(SudokuBoard[1][6])},{Str(SudokuBoard[1][7])},{Str(SudokuBoard[1][8])}{Str(SudokuBoard[2][0])},{Str(SudokuBoard[2][1])},{Str(SudokuBoard[2][2])},{Str(SudokuBoard[2][3])},{Str(SudokuBoard[2][4])},{Str(SudokuBoard[2][5])},{Str(SudokuBoard[2][6])},{Str(SudokuBoard[2][7])},{Str(SudokuBoard[2][8])}{Str(SudokuBoard[3][0])},{Str(SudokuBoard[3][1])},{Str(SudokuBoard[3][2])},{Str(SudokuBoard[3][3])},{Str(SudokuBoard[3][4])},{Str(SudokuBoard[3][5])},{Str(SudokuBoard[3][6])},{Str(SudokuBoard[3][7])},{Str(SudokuBoard[3][8])}{Str(SudokuBoard[4][0])},{Str(SudokuBoard[4][1])},{Str(SudokuBoard[4][2])},{Str(SudokuBoard[4][3])},{Str(SudokuBoard[4][4])},{Str(SudokuBoard[4][5])},{Str(SudokuBoard[4][6])},{Str(SudokuBoard[4][7])},{Str(SudokuBoard[4][8])}{Str(SudokuBoard[5][0])},{Str(SudokuBoard[5][1])},{Str(SudokuBoard[5][2])},{Str(SudokuBoard[5][3])},{Str(SudokuBoard[5][4])},{Str(SudokuBoard[5][5])},{Str(SudokuBoard[5][6])},{Str(SudokuBoard[5][7])},{Str(SudokuBoard[5][8])}{Str(SudokuBoard[6][0])},{Str(SudokuBoard[6][1])},{Str(SudokuBoard[6][2])},{Str(SudokuBoard[6][3])},{Str(SudokuBoard[6][4])},{Str(SudokuBoard[6][5])},{Str(SudokuBoard[6][6])},{Str(SudokuBoard[6][7])},{Str(SudokuBoard[6][8])}{Str(SudokuBoard[7][0])},{Str(SudokuBoard[7][1])},{Str(SudokuBoard[7][2])},{Str(SudokuBoard[7][3])},{Str(SudokuBoard[7][4])},{Str(SudokuBoard[7][5])},{Str(SudokuBoard[7][6])},{Str(SudokuBoard[7][7])},{Str(SudokuBoard[7][8])}{Str(SudokuBoard[8][0])},{Str(SudokuBoard[8][1])},{Str(SudokuBoard[8][2])},{Str(SudokuBoard[8][3])},{Str(SudokuBoard[8][4])},{Str(SudokuBoard[8][5])},{Str(SudokuBoard[8][6])},{Str(SudokuBoard[8][7])},{Str(SudokuBoard[8][8])}";  } }

沒什么好說的,就是保存答案的,因為有些數獨的解不唯一,將來有機會擴展求多解時避免相互覆蓋。

還有一個輔助類,單元格定義

public class SudokuBlock {  /// <summary>  /// 填入的數字  /// </summary>  public byte? Number { get; private set; }  /// <summary>  /// X坐標  /// </summary>  public byte X { get; }  /// <summary>  /// Y坐標  /// </summary>  public byte Y { get; }  /// <summary>  /// 候選數字,下標所示狀態表示數字“下標加1”是否能填入  /// </summary>  public BitArray Candidate { get; private set; }  /// <summary>  /// 是否為條件(題目)給出數字的單元格  /// </summary>  public bool IsCondition { get; }  /// <summary>  /// 是否為游戲開始就能確定唯一可填數字的單元格  /// </summary>  public bool IsUnique { get; private set; }  public SudokuBlock(bool isCondition, BitArray candidate, byte? number, byte x, byte y)  {   IsCondition = isCondition;   Candidate = candidate;   Number = number;   IsUnique = false;   X = x;   Y = y;  }  public void SetNumber(byte? number)  {   Number = number;  }  public void SetCandidate(BitArray candidate)  {   Candidate = candidate;  }  public void SetUnique()  {   IsUnique = true;  } }

測試代碼

static void Main(string[] args)  {   //模板   //byte[][] game = new byte[][] {   // new byte[]{0, 0, 0, 0, 0, 0, 0, 0, 0},   // new byte[]{0, 0, 0, 0, 0, 0, 0, 0, 0},   // new byte[]{0, 0, 0, 0, 0, 0, 0, 0, 0},   // new byte[]{0, 0, 0, 0, 0, 0, 0, 0, 0},   // new byte[]{0, 0, 0, 0, 0, 0, 0, 0, 0},   // new byte[]{0, 0, 0, 0, 0, 0, 0, 0, 0},   // new byte[]{0, 0, 0, 0, 0, 0, 0, 0, 0},   // new byte[]{0, 0, 0, 0, 0, 0, 0, 0, 0},   // new byte[]{0, 0, 0, 0, 0, 0, 0, 0, 0},};   //這個簡單,無需嘗試,一直填唯一數單元格,填完后剩下的單元格又有會變唯一數單元格   //byte[][] game = new byte[][] {   // new byte[]{0, 5, 0, 7, 0, 6, 0, 1, 0},   // new byte[]{0, 8, 0, 0, 9, 0, 0, 6, 0},   // new byte[]{0, 6, 9, 0, 8, 0, 7, 3, 0},   // new byte[]{0, 1, 0, 0, 4, 0, 0, 0, 6},   // new byte[]{6, 0, 7, 1, 0, 3, 8, 0, 5},   // new byte[]{9, 0, 0, 0, 0, 8, 0, 2, 0},   // new byte[]{0, 2, 4, 0, 1, 0, 6, 5, 0},   // new byte[]{0, 7, 0, 0, 6, 0, 0, 4, 0},   // new byte[]{0, 9, 0, 4, 0, 2, 0, 8, 0},};   //可以填一部分唯一數單元格,剩下一部分需要嘗試,調試用   //byte[][] game = new byte[][] {   // new byte[]{7, 0, 0, 5, 0, 0, 0, 0, 2},   // new byte[]{0, 3, 0, 0, 0, 4, 6, 0, 0},   // new byte[]{0, 0, 2, 6, 0, 0, 0, 0, 0},   // new byte[]{2, 0, 0, 0, 7, 0, 0, 0, 5},   // new byte[]{5, 0, 0, 1, 0, 3, 0, 0, 6},   // new byte[]{3, 0, 0, 4, 0, 0, 0, 0, 9},   // new byte[]{0, 0, 0, 0, 0, 1, 5, 0, 0},   // new byte[]{0, 0, 7, 2, 0, 0, 0, 4, 0},   // new byte[]{4, 0, 0, 0, 0, 9, 0, 0, 7},};   //全部要靠嘗試來填   byte[][] game = new byte[][] {    new byte[]{1, 0, 0, 2, 0, 0, 3, 0, 0},    new byte[]{0, 4, 0, 5, 0, 0, 0, 6, 0},    new byte[]{0, 0, 0, 7, 0, 0, 8, 0, 0},    new byte[]{3, 0, 0, 0, 0, 7, 0, 0, 0},    new byte[]{0, 9, 0, 0, 0, 0, 0, 5, 0},    new byte[]{0, 0, 0, 6, 0, 0, 0, 0, 7},    new byte[]{0, 0, 2, 0, 0, 4, 0, 0, 0},    new byte[]{0, 5, 0, 0, 0, 6, 0, 9, 0},    new byte[]{0, 0, 8, 0, 0, 1, 0, 0, 3},};   var su = new SudokuSolver(game);   var r = su.Solve();   var r1 = r.First();   static IEnumerable<PathTree> GetPath(PathTree pathTree)   {    List<PathTree> list = new List<PathTree>();    var path = pathTree;    while (path.Parent != null)    {     list.Add(path);     path = path.Parent;    }    return list.Reverse<PathTree>();   }   var p = GetPath(r1.path).Select(x => $"在 {x.X + 1} 行 {x.Y + 1} 列填入 {x.Number}");   foreach(var step in p)   {    Console.WriteLine(step);   }   Console.WriteLine(r1.sudoku);   Console.ReadKey();  }

關于C#中怎么實現一個數獨求解算法問題的解答就分享到這里了,希望以上內容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關注億速云行業資訊頻道了解更多相關知識。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

扎兰屯市| 望奎县| 六枝特区| 安国市| 桓台县| 资讯| 营口市| 吉木萨尔县| 中江县| 广水市| 调兵山市| 柯坪县| 偃师市| 崇信县| 宁德市| 天柱县| 长治县| 甘南县| 临武县| 盐源县| 纳雍县| 石屏县| 阳江市| 揭东县| 苍南县| 梨树县| 武川县| 同心县| 宁南县| 保靖县| 高淳县| 桃园县| 晋宁县| 朝阳县| 隆安县| 宿松县| 炉霍县| 林西县| 全南县| 昭通市| 河北区|