91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Hook 鉤子函數在Python中的作用有哪些

發布時間:2020-12-09 15:19:51 來源:億速云 閱讀:748 作者:Leah 欄目:開發技術

這篇文章給大家介紹Hook 鉤子函數在Python中的作用有哪些,內容非常詳細,感興趣的小伙伴們可以參考借鑒,希望對大家能有所幫助。

1. 什么是Hook

經常會聽到鉤子函數(hook function)這個概念,最近在看目標檢測開源框架mmdetection,里面也出現大量Hook的編程方式,那到底什么是hook?hook的作用是什么?

  • what is hook ?鉤子hook,顧名思義,可以理解是一個掛鉤,作用是有需要的時候掛一個東西上去。具體的解釋是:鉤子函數是把我們自己實現的hook函數在某一時刻掛接到目標掛載點上。
  • hook函數的作用 舉個例子,hook的概念在windows桌面軟件開發很常見,特別是各種事件觸發的機制; 比如C++的MFC程序中,要監聽鼠標左鍵按下的時間,MFC提供了一個onLeftKeyDown的鉤子函數。很顯然,MFC框架并沒有為我們實現onLeftKeyDown具體的操作,只是為我們提供一個鉤子,當我們需要處理的時候,只要去重寫這個函數,把我們需要操作掛載在這個鉤子里,如果我們不掛載,MFC事件觸發機制中執行的就是空的操作。

從上面可知

  • hook函數是程序中預定義好的函數,這個函數處于原有程序流程當中(暴露一個鉤子出來)
  • 我們需要再在有流程中鉤子定義的函數塊中實現某個具體的細節,需要把我們的實現,掛接或者注冊(register)到鉤子里,使得hook函數對目標可用
  • hook 是一種編程機制,和具體的語言沒有直接的關系
  • 如果從設計模式上看,hook模式是模板方法的擴展
  • 鉤子只有注冊的時候,才會使用,所以原有程序的流程中,沒有注冊或掛載時,執行的是空(即沒有執行任何操作)

本文用python來解釋hook的實現方式,并展示在開源項目中hook的應用案例。hook函數和我們常聽到另外一個名稱:回調函數(callback function)功能是類似的,可以按照同種模式來理解。

Hook 鉤子函數在Python中的作用有哪些

2. hook實現例子

據我所知,hook函數最常使用在某種流程處理當中。這個流程往往有很多步驟。hook函數常常掛載在這些步驟中,為增加額外的一些操作,提供靈活性。

下面舉一個簡單的例子,這個例子的目的是實現一個通用往隊列中插入內容的功能。流程步驟有2個

需要再插入隊列前,對數據進行篩選 input_filter_fn

插入隊列 insert_queue

class ContentStash(object):
  """
  content stash for online operation
  pipeline is
  1. input_filter: filter some contents, no use to user
  2. insert_queue(redis or other broker): insert useful content to queue
  """
 
  def __init__(self):
    self.input_filter_fn = None
    self.broker = []
 
  def register_input_filter_hook(self, input_filter_fn):
    """
    register input filter function, parameter is content dict
    Args:
      input_filter_fn: input filter function
    Returns:
    """
    self.input_filter_fn = input_filter_fn
 
  def insert_queue(self, content):
    """
    insert content to queue
    Args:
      content: dict
    Returns:
    """
    self.broker.append(content)
 
  def input_pipeline(self, content, use=False):
    """
    pipeline of input for content stash
    Args:
      use: is use, defaul False
      content: dict
    Returns:
    """
    if not use:
      return
 
    # input filter
    if self.input_filter_fn:
      _filter = self.input_filter_fn(content)
      
    # insert to queue
    if not _filter:
      self.insert_queue(content)
 
# test
## 實現一個你所需要的鉤子實現:比如如果content 包含time就過濾掉,否則插入隊列
def input_filter_hook(content):
  """
  test input filter hook
  Args:
    content: dict
  Returns: None or content
  """
  if content.get('time') is None:
    return
  else:
    return content
 
# 原有程序
content = {'filename': 'test.jpg', 'b64_file': "#test", 'data': {"result": "cat", "probility": 0.9}}
content_stash = ContentStash('audit', work_dir='')
 
# 掛上鉤子函數, 可以有各種不同鉤子函數的實現,但是要主要函數輸入輸出必須保持原有程序中一致,比如這里是content
content_stash.register_input_filter_hook(input_filter_hook)
 
# 執行流程
content_stash.input_pipeline(content)

3. hook在開源框架中的應用

3.1 keras

在深度學習訓練流程中,hook函數體現的淋漓盡致。

一個訓練過程(不包括數據準備),會輪詢多次訓練集,每次稱為一個epoch,每個epoch又分為多個batch來訓練。流程先后拆解成:

  • 開始訓練
  • 訓練一個epoch前
  • 訓練一個batch前
  • 訓練一個batch后
  • 訓練一個epoch后
  • 評估驗證集
  • 結束訓練

這些步驟是穿插在訓練一個batch數據的過程中,這些可以理解成是鉤子函數,我們可能需要在這些鉤子函數中實現一些定制化的東西,比如在訓練一個epoch后我們要保存下訓練的模型,在結束訓練時用最好的模型執行下測試集的效果等等。

keras中是通過各種回調函數來實現鉤子hook功能的。這里放一個callback的父類,定制時只要繼承這個父類,實現你過關注的鉤子就可以了。

@keras_export('keras.callbacks.Callback')
class Callback(object):
 """Abstract base class used to build new callbacks.
 Attributes:
   params: Dict. Training parameters
     (eg. verbosity, batch size, number of epochs...).
   model: Instance of `keras.models.Model`.
     Reference of the model being trained.
 The `logs` dictionary that callback methods
 take as argument will contain keys for quantities relevant to
 the current batch or epoch (see method-specific docstrings).
 """
 
 def __init__(self):
  self.validation_data = None # pylint: disable=g-missing-from-attributes
  self.model = None
  # Whether this Callback should only run on the chief worker in a
  # Multi-Worker setting.
  # TODO(omalleyt): Make this attr public once solution is stable.
  self._chief_worker_only = None
  self._supports_tf_logs = False
 
 def set_params(self, params):
  self.params = params
 
 def set_model(self, model):
  self.model = model
 
 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_batch_begin(self, batch, logs=None):
  """A backwards compatibility alias for `on_train_batch_begin`."""
 
 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_batch_end(self, batch, logs=None):
  """A backwards compatibility alias for `on_train_batch_end`."""
 
 @doc_controls.for_subclass_implementers
 def on_epoch_begin(self, epoch, logs=None):
  """Called at the start of an epoch.
  Subclasses should override for any actions to run. This function should only
  be called during TRAIN mode.
  Arguments:
    epoch: Integer, index of epoch.
    logs: Dict. Currently no data is passed to this argument for this method
     but that may change in the future.
  """
 
 @doc_controls.for_subclass_implementers
 def on_epoch_end(self, epoch, logs=None):
  """Called at the end of an epoch.
  Subclasses should override for any actions to run. This function should only
  be called during TRAIN mode.
  Arguments:
    epoch: Integer, index of epoch.
    logs: Dict, metric results for this training epoch, and for the
     validation epoch if validation is performed. Validation result keys
     are prefixed with `val_`.
  """
 
 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_train_batch_begin(self, batch, logs=None):
  """Called at the beginning of a training batch in `fit` methods.
  Subclasses should override for any actions to run.
  Arguments:
    batch: Integer, index of batch within the current epoch.
    logs: Dict, contains the return value of `model.train_step`. Typically,
     the values of the `Model`'s metrics are returned. Example:
     `{'loss': 0.2, 'accuracy': 0.7}`.
  """
  # For backwards compatibility.
  self.on_batch_begin(batch, logs=logs)
 
 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_train_batch_end(self, batch, logs=None):
  """Called at the end of a training batch in `fit` methods.
  Subclasses should override for any actions to run.
  Arguments:
    batch: Integer, index of batch within the current epoch.
    logs: Dict. Aggregated metric results up until this batch.
  """
  # For backwards compatibility.
  self.on_batch_end(batch, logs=logs)
 
 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_test_batch_begin(self, batch, logs=None):
  """Called at the beginning of a batch in `evaluate` methods.
  Also called at the beginning of a validation batch in the `fit`
  methods, if validation data is provided.
  Subclasses should override for any actions to run.
  Arguments:
    batch: Integer, index of batch within the current epoch.
    logs: Dict, contains the return value of `model.test_step`. Typically,
     the values of the `Model`'s metrics are returned. Example:
     `{'loss': 0.2, 'accuracy': 0.7}`.
  """
 
 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_test_batch_end(self, batch, logs=None):
  """Called at the end of a batch in `evaluate` methods.
  Also called at the end of a validation batch in the `fit`
  methods, if validation data is provided.
  Subclasses should override for any actions to run.
  Arguments:
    batch: Integer, index of batch within the current epoch.
    logs: Dict. Aggregated metric results up until this batch.
  """
 
 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_predict_batch_begin(self, batch, logs=None):
  """Called at the beginning of a batch in `predict` methods.
  Subclasses should override for any actions to run.
  Arguments:
    batch: Integer, index of batch within the current epoch.
    logs: Dict, contains the return value of `model.predict_step`,
     it typically returns a dict with a key 'outputs' containing
     the model's outputs.
  """
 
 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_predict_batch_end(self, batch, logs=None):
  """Called at the end of a batch in `predict` methods.
  Subclasses should override for any actions to run.
  Arguments:
    batch: Integer, index of batch within the current epoch.
    logs: Dict. Aggregated metric results up until this batch.
  """
 
 @doc_controls.for_subclass_implementers
 def on_train_begin(self, logs=None):
  """Called at the beginning of training.
  Subclasses should override for any actions to run.
  Arguments:
    logs: Dict. Currently no data is passed to this argument for this method
     but that may change in the future.
  """
 
 @doc_controls.for_subclass_implementers
 def on_train_end(self, logs=None):
  """Called at the end of training.
  Subclasses should override for any actions to run.
  Arguments:
    logs: Dict. Currently the output of the last call to `on_epoch_end()`
     is passed to this argument for this method but that may change in
     the future.
  """
 
 @doc_controls.for_subclass_implementers
 def on_test_begin(self, logs=None):
  """Called at the beginning of evaluation or validation.
  Subclasses should override for any actions to run.
  Arguments:
    logs: Dict. Currently no data is passed to this argument for this method
     but that may change in the future.
  """
 
 @doc_controls.for_subclass_implementers
 def on_test_end(self, logs=None):
  """Called at the end of evaluation or validation.
  Subclasses should override for any actions to run.
  Arguments:
    logs: Dict. Currently the output of the last call to
     `on_test_batch_end()` is passed to this argument for this method
     but that may change in the future.
  """
 
 @doc_controls.for_subclass_implementers
 def on_predict_begin(self, logs=None):
  """Called at the beginning of prediction.
  Subclasses should override for any actions to run.
  Arguments:
    logs: Dict. Currently no data is passed to this argument for this method
     but that may change in the future.
  """
 
 @doc_controls.for_subclass_implementers
 def on_predict_end(self, logs=None):
  """Called at the end of prediction.
  Subclasses should override for any actions to run.
  Arguments:
    logs: Dict. Currently no data is passed to this argument for this method
     but that may change in the future.
  """
 
 def _implements_train_batch_hooks(self):
  """Determines if this Callback should be called for each train batch."""
  return (not generic_utils.is_default(self.on_batch_begin) or
      not generic_utils.is_default(self.on_batch_end) or
      not generic_utils.is_default(self.on_train_batch_begin) or
      not generic_utils.is_default(self.on_train_batch_end))

這些鉤子的原始程序是在模型訓練流程中的

keras源碼位置: tensorflow\python\keras\engine\training.py

部分摘錄如下(## I am hook):

# Container that configures and calls `tf.keras.Callback`s.
   if not isinstance(callbacks, callbacks_module.CallbackList):
    callbacks = callbacks_module.CallbackList(
      callbacks,
      add_history=True,
      add_progbar=verbose != 0,
      model=self,
      verbose=verbose,
      epochs=epochs,
      steps=data_handler.inferred_steps)
 
   ## I am hook
   callbacks.on_train_begin()
   training_logs = None
   # Handle fault-tolerance for multi-worker.
   # TODO(omalleyt): Fix the ordering issues that mean this has to
   # happen after `callbacks.on_train_begin`.
   data_handler._initial_epoch = ( # pylint: disable=protected-access
     self._maybe_load_initial_epoch_from_ckpt(initial_epoch))
   for epoch, iterator in data_handler.enumerate_epochs():
    self.reset_metrics()
    callbacks.on_epoch_begin(epoch)
    with data_handler.catch_stop_iteration():
     for step in data_handler.steps():
      with trace.Trace(
        'TraceContext',
        graph_type='train',
        epoch_num=epoch,
        step_num=step,
        batch_size=batch_size):
       ## I am hook
       callbacks.on_train_batch_begin(step)
       tmp_logs = train_function(iterator)
       if data_handler.should_sync:
        context.async_wait()
       logs = tmp_logs # No error, now safe to assign to logs.
       end_step = step + data_handler.step_increment
       callbacks.on_train_batch_end(end_step, logs)
    epoch_logs = copy.copy(logs)
 
    # Run validation.
 
    ## I am hook
    callbacks.on_epoch_end(epoch, epoch_logs)

3.2 mmdetection

mmdetection是一個目標檢測的開源框架,集成了許多不同的目標檢測深度學習算法(pytorch版),如faster-rcnn, fpn, retianet等。里面也大量使用了hook,暴露給應用實現流程中具體部分。

詳見https://github.com/open-mmlab/mmdetection

這里看一個訓練的調用例子(摘錄)https://github.com/open-mmlab/mmdetection/blob/5d592154cca589c5113e8aadc8798bbc73630d98/mmdet/apis/train.py

def train_detector(model,
          dataset,
          cfg,
          distributed=False,
          validate=False,
          timestamp=None,
          meta=None):
  logger = get_root_logger(cfg.log_level)
 
  # prepare data loaders
 
  # put model on gpus
 
  # build runner
  optimizer = build_optimizer(model, cfg.optimizer)
  runner = EpochBasedRunner(
    model,
    optimizer=optimizer,
    work_dir=cfg.work_dir,
    logger=logger,
    meta=meta)
  # an ugly workaround to make .log and .log.json filenames the same
  runner.timestamp = timestamp
 
  # fp16 setting
  # register hooks
  runner.register_training_hooks(cfg.lr_config, optimizer_config,
                  cfg.checkpoint_config, cfg.log_config,
                  cfg.get('momentum_config', None))
  if distributed:
    runner.register_hook(DistSamplerSeedHook())
 
  # register eval hooks
  if validate:
    # Support batch_size > 1 in validation
    eval_cfg = cfg.get('evaluation', {})
    eval_hook = DistEvalHook if distributed else EvalHook
    runner.register_hook(eval_hook(val_dataloader, **eval_cfg))
 
  # user-defined hooks
  if cfg.get('custom_hooks', None):
    custom_hooks = cfg.custom_hooks
    assert isinstance(custom_hooks, list), \
      f'custom_hooks expect list type, but got {type(custom_hooks)}'
    for hook_cfg in cfg.custom_hooks:
      assert isinstance(hook_cfg, dict), \
        'Each item in custom_hooks expects dict type, but got ' \
        f'{type(hook_cfg)}'
      hook_cfg = hook_cfg.copy()
      priority = hook_cfg.pop('priority', 'NORMAL')
      hook = build_from_cfg(hook_cfg, HOOKS)
      runner.register_hook(hook, priority=priority)

4. 總結

總結如下:

  • hook函數是流程中預定義好的一個步驟,沒有實現
  • 掛載或者注冊時, 流程執行就會執行這個鉤子函數
  • 回調函數和hook函數功能上是一致的
  • hook設計方式帶來靈活性,如果流程中有一個步驟,你想讓調用方來實現,你可以用hook函數

關于Hook 鉤子函數在Python中的作用有哪些就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

额济纳旗| 安顺市| 左云县| 南华县| 淳化县| 白朗县| 洛川县| 抚州市| 奉新县| 永年县| 健康| 绥宁县| 江都市| 松潘县| 义马市| 隆林| 大冶市| 隆化县| 宿松县| 弥勒县| 通化县| 封丘县| 普安县| 手机| 高阳县| 灌云县| 新郑市| 衡山县| 崇义县| 安岳县| 隆回县| 恩施市| 桐城市| 吴桥县| 长治市| 绥江县| 无棣县| 柳林县| 博罗县| 肃北| 临邑县|