91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

基于 Agent的Python是怎么實現隔離仿真

發布時間:2021-12-18 17:23:05 來源:億速云 閱讀:174 作者:柒染 欄目:互聯網科技

這篇文章給大家介紹基于 Agent的Python是怎么實現隔離仿真,內容非常詳細,感興趣的小伙伴們可以參考借鑒,希望對大家能有所幫助。

我會向你介紹用基于 Agent 的模型理解復雜現象的威力。為此,我們會用到一些 Python,社會學的案例分析和 Schelling 模型。

1. 案例分析

如果你觀察多民族(multi-ethnic)混居城市的種族(racial)分布,你會對不可思議的種族隔離感到驚訝。舉個例子,下面是美國人口普查局(US Census)用種族和顏色對應標記的紐約市地圖。種族隔離清晰可見。

許多人會從這個現象中認定人是偏隘的(intolerant),不愿與其它種族比鄰而居。然而進一步看,會發現細微的差別。2005 年的諾貝爾經濟學獎得主托馬斯·謝林(Thomas Schelling)在上世紀七十年代,就對這方面非常感興趣,并建立了一個基于 Agent 的模型——“Schelling 隔離模型”的來解釋這種現象。借助這個極其簡單的模型,Schelling 會告訴我們,宏觀所見并非微觀所為(What’s going down)。

我們會借助 Schelling 模型模擬一些仿真來深刻理解隔離現象。

2. Schelling 隔離模型:設置和定義

基于 Agent 的模型需要三個參數:1)Agents,2)行為(規則)和 3)總體層面(aggregate level)的評估。在 Schelling 模型中,Agents 是市民,行為則是基于相似比(similarity ratio )的搬遷,而總體評估評估就是相似比。

假設城市有 n 個種族。我們用唯一的顏色來標識他們,并用網格來代表城市,每個單元格則是一間房。要么是空房子,要么有居民,且數量為 1。如果房子是空的,我們用白色標識。如果有居民,我們用此人的種群顏色來標識。我們把每個人周邊房屋(上下左右、左上右上、左下右下)定義為鄰居。

Schelling 的目的是想測試當居民更傾向于選擇同種族的鄰居(甚至多種族)時會如果發生什么。如果同種族鄰居的比例上升到確定閾值(稱之為相似性閾值(Similarity Threshold)),那么我們認為這個人已經滿意(satisfied)了。如果還沒有,就是不滿意。

Schelling 的仿真如下。首先我們將人隨機分配到城里并留空一些房子。對于每個居民,我們都會檢查他(她)是否滿意。如果滿意,我們什么也不做。但如果不滿意,我們把他分配到空房子。仿真經過幾次迭代后,我們會觀察最終的種族分布。

3. Schelling 模型的 Python 實現

早在上世紀 70 年代,Schelling 就用鉛筆和硬幣在紙上完成了他的仿真。我們現在則用 Python 來完成相同的仿真。

為了模擬仿真,我們首先導入一些必要的庫。除了 Matplotlib 以外,其它庫都是 Python 默認安裝的。

Python

import matplotlib.pyplot as plt

import itertools

import random

import copy

 

接下來,定義名為 Schelling 的類,涉及到 6 個參數:城市的寬和高,空房子的比例,相似性閾值,迭代數和種族數。我們在這個類中定義了 4 個方法:populate,is_unsatisfied,update,move_to_empty, 還有 plot)。

Python

class Schelling:

    def __init__(self, width, height, empty_ratio, similarity_threshold, n_iterations, races = 2):

        self.width = width

        self.height = height

        self.races = races

        self.empty_ratio = empty_ratio

        self.similarity_threshold = similarity_threshold

        self.n_iterations = n_iterations

        self.empty_houses = []

        self.agents = {}

 

    def populate(self):

        ....

 

    def is_unsatisfied(self, x, y):

        ....

 

    def update(self):        

        ....

 

    def move_to_empty(self, x, y):

        ....

 

    def plot(self):

        ....

 

poplate 方法被用在仿真的開頭,這個方法將居民隨機分配在網格上。

Python

def populate(self):

    self.all_houses = list(itertools.product(range(self.width),range(self.height)))

    random.shuffle(self.all_houses)

 

    self.n_empty = int( self.empty_ratio * len(self.all_houses) )

    self.empty_houses = self.all_houses[:self.n_empty]

 

    self.remaining_houses = self.all_houses[self.n_empty:]

    houses_by_race = [self.remaining_houses[i::self.races] for i in range(self.races)]

    for i in range(self.races):

        # 為每個種族創建 agent

        self.agents = dict(

                            self.agents.items() +

                            dict(zip(houses_by_race[i], [i+1]*len(houses_by_race[i]))).items()

 

is_unsatisfied 方法把房屋的 (x, y) 坐標作為傳入參數,查看同種群鄰居的比例,如果比理想閾值(happiness threshold)高則返回 True,否則返回 False。

Python

def is_unsatisfied(self, x, y):

 

    race = self.agents[(x,y)]

    count_similar = 0

    count_different = 0

 

    if x > 0 and y > 0 and (x-1, y-1) not in self.empty_houses:

        if self.agents[(x-1, y-1)] == race:

            count_similar += 1

        else:

            count_different += 1

    if y > 0 and (x,y-1) not in self.empty_houses:

        if self.agents[(x,y-1)] == race:

            count_similar += 1

        else:

            count_different += 1

    if x < (self.width-1) and y > 0 and (x+1,y-1) not in self.empty_houses:

        if self.agents[(x+1,y-1)] == race:

            count_similar += 1

        else:

            count_different += 1

    if x > 0 and (x-1,y) not in self.empty_houses:

        if self.agents[(x-1,y)] == race:

            count_similar += 1

        else:

            count_different += 1        

    if x < (self.width-1) and (x+1,y) not in self.empty_houses:

        if self.agents[(x+1,y)] == race:

            count_similar += 1

        else:

            count_different += 1

    if x > 0 and y < (self.height-1) and (x-1,y+1) not in self.empty_houses:

        if self.agents[(x-1,y+1)] == race:

            count_similar += 1

        else:

            count_different += 1        

    if x > 0 and y < (self.height-1) and (x,y+1) not in self.empty_houses:

        if self.agents[(x,y+1)] == race:

            count_similar += 1

        else:

            count_different += 1        

    if x < (self.width-1) and y < (self.height-1) and (x+1,y+1) not in self.empty_houses:

        if self.agents[(x+1,y+1)] == race:

            count_similar += 1

        else:

            count_different += 1

 

    if (count_similar+count_different) == 0:

        return False

    else:

        return float(count_similar)/(count_similar+count_different) < self.happy_threshold

 

update 方法將查看網格上的居民是否尚未滿意,如果尚未滿意,將隨機把此人分配到空房子中。并模擬 n_iterations 次。

Python

def update(self):

    for i in range(self.n_iterations):

        self.old_agents = copy.deepcopy(self.agents)

        n_changes = 0

        for agent in self.old_agents:

            if self.is_unhappy(agent[0], agent[1]):

                agent_race = self.agents[agent]

                empty_house = random.choice(self.empty_houses)

                self.agents[empty_house] = agent_race

                del self.agents[agent]

                self.empty_houses.remove(empty_house)

                self.empty_houses.append(agent)

                n_changes += 1

        print n_changes

        if n_changes == 0:

            break

 

move_to_empty 方法把房子坐標(x, y)作為傳入參數,并將 (x, y) 房間內的居民遷入空房子。這個方法被 update 方法調用,會把尚不滿意的人遷入空房子。

Python

def move_to_empty(self, x, y):

    race = self.agents[(x,y)]

    empty_house = random.choice(self.empty_houses)

    self.updated_agents[empty_house] = race

    del self.updated_agents[(x, y)]

    self.empty_houses.remove(empty_house)

    self.empty_houses.append((x, y))

 

plot 方法用來繪制整個城市和居民。我們隨時可以調用這個方法來了解城市的居民分布。這個方法有兩個傳入參數:title 和 file_name。

Python

def plot(self, title, file_name):

    fig, ax = plt.subplots()

    # 如果要進行超過 7 種顏色的仿真,你應該相應地進行設置

    agent_colors = {1:'b', 2:'r', 3:'g', 4:'c', 5:'m', 6:'y', 7:'k'}

    for agent in self.agents:

        ax.scatter(agent[0]+0.5, agent[1]+0.5, color=agent_colors[self.agents[agent]])

 

    ax.set_title(title, fontsize=10, fontweight='bold')

    ax.set_xlim([0, self.width])

    ax.set_ylim([0, self.height])

    ax.set_xticks([])

    ax.set_yticks([])

    plt.savefig(file_name)

 

4. 仿真

現在我們實現了 Schelling 類,可以模擬仿真并繪制結果。我們會按照下面的需求(characteristics)進行三次仿真:

  • 寬 = 50,而高 = 50(包含 2500 間房子)

  • 30% 的空房子

  • 相似性閾值 = 30%(針對仿真 1),相似性閾值 = 50%(針對仿真 2),相似性閾值 = 80%(針對仿真 3)

  • 最大迭代數 = 500

  • 種族數量 = 2

創建并“填充”城市。

Python

schelling_1 = Schelling(50, 50, 0.3, 0.3, 500, 2)

schelling_1.populate()

 

schelling_2 = Schelling(50, 50, 0.3, 0.5, 500, 2)

schelling_2.populate()

 

schelling_3 = Schelling(50, 50, 0.3, 0.8, 500, 2)

schelling_3.populate()

 

接下來,我們繪制初始階段的城市。注意,相似性閾值在城市的初始狀態不起作用。

Python

schelling_1_1.plot('Schelling Model with 2 colors: Initial State', 'schelling_2_initial.png')

 

下面我們運行 update 方法,繪制每個相似性閾值的最終分布。

Python

schelling_1.update()

schelling_2.update()

schelling_3.update()

 

schelling_1.plot('Schelling Model with 2 colors: Final State with Similarity Threshold 30%', 'schelling_2_30_final.png')

schelling_2.plot('Schelling Model with 2 colors: Final State with Similarity Threshold 50%', 'schelling_2_50_final.png')

schelling_3.plot('Schelling Model with 2 colors: Final State with Similarity Threshold 80%', 'schelling_2_80_final.png')

 

我們發現相似性閾值越高,城市的隔離度就越高。此外,我們還會發現即便相似性閾值很小,城市依舊會產生隔離。換言之,即使居民非常包容(tolerant)(相當于相似性閾值很小),還是會以隔離告終。我們可以總結出:宏觀所見并非微觀所為。

5. 測量隔離

以上仿真,我們只通過可視化來確認隔離發生。然而,我們卻沒有對隔離的計算進行定量評估。本節我們會定義這個評估標準,我們也會模擬一些仿真來確定理想閾值和隔離程度的關系。

首先在 Schelling 類中添加 calculate_similarity 方法。這個方法會計算每個 Agent 的相似性并得出均值。我們會用平均相似比評估隔離程度。

Python

def calculate_similarity(self):

    similarity = []

    for agent in self.agents:

        count_similar = 0

        count_different = 0

        x = agent[0]

        y = agent[1]

        race = self.agents[(x,y)]

        if x > 0 and y > 0 and (x-1, y-1) not in self.empty_houses:

            if self.agents[(x-1, y-1)] == race:

                count_similar += 1

            else:

                count_different += 1

        if y > 0 and (x,y-1) not in self.empty_houses:

            if self.agents[(x,y-1)] == race:

                count_similar += 1

            else:

                count_different += 1

        if x < (self.width-1) and y > 0 and (x+1,y-1) not in self.empty_houses:

            if self.agents[(x+1,y-1)] == race:

                count_similar += 1

            else:

                count_different += 1

        if x > 0 and (x-1,y) not in self.empty_houses:

            if self.agents[(x-1,y)] == race:

                count_similar += 1

            else:

                count_different += 1        

        if x < (self.width-1) and (x+1,y) not in self.empty_houses:

            if self.agents[(x+1,y)] == race:

                count_similar += 1

            else:

                count_different += 1

        if x > 0 and y < (self.height-1) and (x-1,y+1) not in self.empty_houses:

            if self.agents[(x-1,y+1)] == race:

                count_similar += 1

            else:

                count_different += 1        

        if x > 0 and y < (self.height-1) and (x,y+1) not in self.empty_houses:

            if self.agents[(x,y+1)] == race:

                count_similar += 1

            else:

                count_different += 1        

        if x < (self.width-1) and y < (self.height-1) and (x+1,y+1) not in self.empty_houses:

            if self.agents[(x+1,y+1)] == race:

                count_similar += 1

            else:

                count_different += 1

        try:

            similarity.append(float(count_similar)/(count_similar+count_different))

        except:

            similarity.append(1)

    return sum(similarity)/len(similarity)

 

接下去,我們算出每個相似性閾值的平均相似比,并繪制出相似性閾值和相似比之間的關系。

Python

similarity_threshold_ratio = {}

for i in [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]:

    schelling = Schelling(50, 50, 0.3, i, 500, 2)

    schelling.populate()

    schelling.update()

    similarity_threshold_ratio[i] = schelling.calculate_similarity()

 

fig, ax = plt.subplots()

plt.plot(similarity_threshold_ratio.keys(), similarity_threshold_ratio.values(), 'ro')

ax.set_title('Similarity Threshold vs. Mean Similarity Ratio', fontsize=15, fontweight='bold')

ax.set_xlim([0, 1])

ax.set_ylim([0, 1.1])

ax.set_xlabel("Similarity Threshold")

ax.set_ylabel("Mean Similarity Ratio")

plt.savefig('schelling_segregation_measure.png')

 

關于基于 Agent的Python是怎么實現隔離仿真就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

仁布县| 江西省| 商丘市| 甘德县| 旬邑县| 安徽省| 安溪县| 环江| 乐清市| 永德县| 涞源县| 黄平县| 白山市| 南昌市| 万源市| 塘沽区| 建平县| 虹口区| 庆元县| 辉南县| 兴安盟| 宿迁市| 蚌埠市| 新野县| 嘉祥县| 喀喇沁旗| 长子县| 新和县| 九寨沟县| 扶沟县| 隆化县| 合川市| 新巴尔虎左旗| 房产| 玉林市| 汾西县| 韶山市| 米脂县| 龙游县| 百色市| 罗平县|