您好,登錄后才能下訂單哦!
但要學習好爬蟲并沒有那么簡單。首先知識點和方向實在是太多了,它關系到了計算機網絡、編程基礎、前端開發、后端開發、App 開發與逆向、網絡安全、數據庫、運維、機器學習、數據分析等各個方向的內容,它像一張大網一樣把現在一些主流的技術棧都連接在了一起。正因為涵蓋的方向多,因此學習的東西也非常零散和雜亂,很多初學者搞不清楚究竟要學習哪些知識,學習過程中遇到反爬也不知道用什么方法來解決,本篇我們來做一些歸納和總結。
初學爬蟲
一些最基本的網站,往往不帶任何反爬措施。比如某個博客站點,我們要爬全站的話就順著列表頁爬到文章頁,再把文章的時間、作者、正文等信息爬下來就可以了。
那代碼怎么寫呢?用 Python 的 requests 等庫就夠了,寫一個基本的邏輯,順著把一篇篇文章的源碼獲取下來,解析的話用 XPath、BeautifulSoup、PyQuery 或者正則表達式,或者粗暴的字符串匹配把想要的內容摳出來,再加個文本寫入存下來就完事了。
代碼很簡單,就幾個方法調用。邏輯很簡單,幾個循環加存儲。最后就能看到一篇篇文章就被我們存到自己的電腦里面了。當然有的同學可能不太會寫代碼或者都懶得寫,那么利用基本的可視化爬取工具,如某爪魚、某裔采集器也能通過可視化點選的方式把數據爬下來。
如果存儲方面稍微擴展一下的話,可以對接上 MySQL、MongoDB、Elasticsearch、Kafka 等等來保存數據,實現持久化存儲。以后查詢或者操作會更方便。
反正,不管效率如何,一個完全沒有反爬的網站用最最基本的方式就搞定了。
到這里,你就說你會爬蟲了嗎?不,還差的遠呢。
Ajax、動態渲染
隨著互聯網的發展,前端技術也在不斷變化,數據的加載方式也不再是單純的服務端渲染了。現在你可以看到很多網站的數據可能都是通過接口的形式傳輸的,或者即使不是接口那也是一些 JSON 的數據,然后經過 JavaScript 渲染得出來的。
這時候,你要再用 requests 來爬那就不頂用了,因為 requests 爬下來的源碼是服務端渲染得到的,瀏覽器看到頁面的和 requests 獲取的結果是不一樣的。真正的數據是經過 JavaScript 執行的出來的,數據來源可能是 Ajax,也可能是頁面里的某些 Data,也可能是一些 ifame 頁面等等,不過大多數情況下可能是 Ajax 接口獲取的。
所以很多情況下需要分析 Ajax,知道這些接口的調用方式之后再用程序來模擬。但是有些接口帶著加密參數,比如 token、sign 等等,又不好模擬,咋整呢?
一種方法就是去分析網站的 JavaScript 邏輯,死摳里面的代碼,揪出來這些參數是怎么構造的,找出思路來了之后再用爬蟲模擬或重寫就行了。如果你解出來了,那么直接模擬的方式效率會高非常多,這里面就需要一些 JavaScript 基礎了,當然有些網站加密邏輯做的太牛逼了,你可能花一個星期也解不出來,最后放棄了。
那這樣解不出來或者不想解,那咋辦呢?這時候可以有一種簡單粗暴的方法就是直接用模擬瀏覽器的方式來爬取,比如用 Puppeteer、Pyppeteer、Selenium、Splash 等,這樣爬取到的源代碼就是真正的網頁代碼,數據自然就好提取了,同時也就繞過分析 Ajax 和一些 JavaScript 邏輯的過程。這種方式就做到了可見即可爬,難度也不大,同時模擬了瀏覽器,也不太會有一些法律方面的問題。
但其實后面的這種方法也會遇到各種反爬的情況,現在很多網站都會去識別 webdriver,看到你是用的 Selenium 等工具,直接干掉或不返回數據,所以你碰到這種網站還得來專門解一下這個問題。
多進程、多線程、協程
上面的情況如果用單線程的爬蟲來模擬是比較簡單的,但是有個問題就是速度慢啊。
爬蟲是 IO 密集型的任務,所以可能大多數情況下都在等待網絡的響應,如果網絡響應速度慢,那就得一直等著。但這個空余的時間其實可以讓 CPU 去做更多事情。那怎么辦呢?多開點線程吧。
所以這時候我們就可以在某些場景下加上多進程、多線程,雖然說多線程有 GIL 鎖,但對于爬蟲來說其實影響沒那么大,所以用上多進程、多線程都可以成倍地提高爬取速度,對應的庫就有 threading、multiprocessing 了。
異步協程就更牛逼了,用 aiohttp、gevent、tornado 等等的基本上你想搞多少并發就搞多少并發,但是還是悠著點,別把人家網站搞掛了。
總之,用上這幾個,爬蟲速度就提上來了。
但速度提上來了不一定是好事,反爬接著肯定就要來了,封你 IP、封你賬號、彈驗證碼、返回假數據,所以有時候龜速爬似乎也是個解決辦法?
分布式
多線程、多進程、協程都能加速,但終究還是單機的爬蟲。要真正做到規模化,還得來靠分布式爬蟲來搞。
分布式的核心是什么?資源共享。比如爬取隊列共享、去重指紋共享等等。
我們可以使用一些基礎的隊列或組件來實現分布式,比如 RabbitMQ、Celery、Kafka、Redis 等等,但經過很多人的嘗試,自己去實現一個分布式爬蟲,性能和擴展性總會出現一些問題,當然特別牛逼的除外哈。不少企業內部其實也有自己開發的一套分布式爬蟲,和業務更緊密,這種當然是最好了。
現在主流的 Python 分布式爬蟲還是基于 Scrapy 的,對接 Scrapy-Redis、Scrapy-Redis-BloomFilter 或者用 Scrapy-Cluster 等等,他們都是基于 Redis 來共享爬取隊列的,總會多多少少遇到一些內存的問題。所以一些人也考慮對接到了其他的消息隊列上面,比如 RabbitMQ、Kafka 等等,解決一些問題,效率也不差。
總之,要提高爬取效率,分布式還是必須要掌握的。
驗證碼
爬蟲難免遇到反爬,驗證碼就是其中之一。要會反爬,那首先就要會解驗證碼。
現在你可以看到很多網站都會有各種各樣的驗證碼了,比如最簡單的圖形驗證碼,要是驗證碼的文字規整的話,OCR 過一遍或者基本的模型庫都能識別,不想搞這個的話可以直接去對接個打碼平臺來搞,準確率還是有的。
然而你可能現在都見不到什么圖形驗證碼了,都是一些行為驗證碼,如某驗、某盾等等,國外也有很多,比如 reCaptcha 等等。一些稍微簡單一點的,比如滑動的,你可以找點辦法識別缺口,比如圖像處理比對、深度學習識別都是可以的。軌跡呢自己寫個模擬正常人行為的,加點抖動之類的。有了軌跡之后咋模擬呢,如果你牛逼,那么可以直接去分析驗證碼的 JavaScript 邏輯,把軌跡數據錄入,那就能得到里面的一些加密參數,直接拿著這些參數放到表單或接口里面就能直接用了。當然也可以用模擬瀏覽器的方式來拖動,也能通過一定的方式拿到加密參數,或者直接用模擬瀏覽器的方式把登錄一起做了,拿著 Cookies 來爬也行。
當然拖動只是一種驗證碼,還有文字點選、邏輯推理等,要是真不想搞,可以找打碼平臺來解出來再模擬,但畢竟花錢的,一些高手就會選擇自己訓練深度學習相關的模型,收集數據、標注、訓練,針對不同的業務訓練不同的模型。這樣有了核心技術,也不用再去花錢找打碼平臺了,再研究下驗證碼的邏輯模擬一下,加密參數就能解出來了。不過有的驗證碼難得很,有的我也沒搞定。
當然有些驗證碼可能是請求過于頻繁而彈出來的,這種如果換個 IP 什么的也能解。
封 IP
封 IP 也是個令人頭疼的事,行之有效的方法就是換代理了。
代理很多種,市面上免費的,收費的太多太多了。
首先可以把市面上免費的代理用起來,自己搭建一個代理池,收集現在全網所有的免費代理,然后加一個測試器一直不斷測試,測試的網址可以改成你要爬的網址。這樣測試通過的一般都能直接拿來爬你的目標網站。我自己也搭建過一個代理池,現在對接了一些免費代理,定時爬、定時測,還寫了個 API 來取,放在 GitHub 了:https://github.com/Python3WebSpider/ProxyPool,打好了 Docker 鏡像,提供了 Kubernetes 腳本,大家可以直接拿來用。
付費代理也是一樣,很多商家提供了代理提取接口,請求一下就能獲取幾十幾百個代理,我們可以同樣把它們接入到代理池里面。但這個代理也分各種套餐,什么開放代理、獨享代理等等的質量和被封的幾率也是不一樣的。
有的商家還利用隧道技術搭了代理,這樣代理的地址和端口我們是不知道的,代理池是由他們來維護的,比如某布云,這樣用起來更省心一些,但是可控性就差一些。
還有更穩定的代理,比如撥號代理、蜂窩代理等等,接入成本會高一些,但是一定程度上也能解決一些封 IP 的問題。
不過這些背后也不簡單,為啥一個好好的高匿代理就是莫名其妙爬不了,背后的一些事就不多講了。
##封賬號
有些信息需要模擬登錄才能爬嘛,如果爬的過快,人家網站直接把你的賬號封禁了,就啥都沒得說了。比如爬公眾號的,人家把你 WX 號封了,那就全完了。
一種解決方法當然就是放慢頻率,控制下節奏。
還有種方法就是看看別的終端,比如手機頁、App 頁、wap 頁,看看有沒有能繞過登錄的法子。
另外比較好的方法,那就是分流。如果你號足夠多,建一個池子,比如 Cookies 池、Token 池、Sign 池反正不管什么池吧,多個賬號跑出來的 Cookies、Token 都放到這個池子里面,用的時候隨機從里面拿一個。如果你想保證爬取效率不變,那么 100 個賬號相比 20 個賬號,對于每個賬號對應的 Cookies、Token 的取用頻率就變成原來的了 1/5,那么被封的概率也就隨之降低了。
奇葩的反爬
上面說的是幾種比較主流的反爬,當然還有非常多奇葩的反爬。比如返回假數據、返回圖片化數據、返回亂序數據、返回罵人的數據、返回求饒的數據,那都具體情況看著辦吧。
這些反爬也得小心點,之前見過一個反爬直接返回 rm -rf /
的也不是沒有,你要是正好有個腳本模擬執行返回結果,后果自己想象哈。
JavaScript 逆向
說到重頭了。隨著前端技術的進步和網站反爬意識的增強,很多網站選擇在前端上下功夫,那就是在前端對一些邏輯或代碼進行加密或混淆。當然這不僅僅是為了保護前端的代碼不被輕易盜取,更重要的是反爬。比如很多 Ajax 接口都會帶著一些參數,比如 sign、token 等等,這些前文也講過了。這種數據我們可以用前文所說的 Selenium 等方式來爬,但總歸來說效率太低了,畢竟它模擬的是網頁渲染的整個過程,而真實的數據可能僅僅就藏在一個小接口里。
如果我們能夠把一些接口的參數真正找出其中的邏輯,用代碼來模擬執行,那效率就會有成倍的提升,而且還能在一定程度上規避上述的反爬現象。
但問題是什么?難啊。
Webpack 是一方面,前端代碼都被壓縮和轉碼成一些 bundle 文件,一些變量的含義已經丟失,不好還原。然后一些網站再加上一些 obfuscator 的機制,把前端代碼變成你完全看不懂的東西,比如字符串拆散打亂、變量十六進制化、控制流扁平化、無限 debug、控制臺禁用等等,前端的代碼和邏輯已經面目全非。有的用 WebAssembly 等技術把前端核心邏輯直接編譯,那就只能慢慢摳了,雖然說有些有一定的技巧,但是總歸來說還是會花費很多時間。但一旦解出來了,那就萬事大吉了。怎么說?就像奧賽題一樣,解出來升天,解不出來 GG。
很多公司招聘爬蟲工程師都會問有沒有 JavaScript 逆向基礎,破解過哪些網站,比如某寶、某多、某條等等,解出來某個他們需要的可能就直接錄用你。每家網站的邏輯都不一樣,難度也不一樣。
App
當然爬蟲不僅僅是網頁爬蟲了,隨著互聯網時代的發展,現在越來越多的公司都選擇將數據放到 App 上面,甚至有些公司只有 App 沒有網站。所以數據只能通過 App 來爬。
咋爬呢?基本的就是抓包工具了,Charles、Fiddler 一把梭,抓到接口之后,直接拿來模擬就行了。
如果接口有加密參數怎么辦呢?一種方法你可以邊爬邊處理,比如 mitmproxy 直接監聽接口數據。另一方面你可以走 Hook,比如上 Xposed 也可以拿到。
那爬的時候又怎么實現自動化呢?總不能拿手來戳吧。其實工具也多,安卓原生的 adb 工具也行,Appium 現在已經是比較主流的方案了,當然還有其他的某精靈都是可以實現的。
最后,有的時候可能真的就不想走自動化的流程,我就想把里面的一些接口邏輯摳出來,那就得搞逆向了,IDA Pro、jdax、FRIDA 等工具就派上用場了,當然這個過程和 JavaScript 逆向一樣很痛苦,甚至可能得讀匯編指令。搞一個案例掉一把頭發也不是不可能的。
智能化
上面的這一通,都搞熟了,恭喜你已經超過了百分之八九十的爬蟲玩家了,當然專門搞 JavaScript 逆向、App 逆向的都是站在食物鏈頂端的男人,這種嚴格來說已經不算爬蟲范疇了,這種神我們就不算在里面了,反正我不是。
除了上面的一些技能,在一些場合下,我們可能也需要結合一些機器學習的技術,讓我們的爬蟲變得更智能起來。
比如現在很多博客、新聞文章,其頁面結構相似度比較高,要提取的信息也比較類似。
比如如何區分一個頁面是索引頁還是詳情頁?如何提取詳情頁的文章鏈接?如何解析文章頁的頁面內容?這些其實都是可以通過一些算法來計算出來的。
所以,一些智能解析技術也營運而生,比如提取詳情頁,一位朋友寫的 GeneralNewsExtractor 表現就非常好。
假如說我來了一個需求,我要爬取一萬個新聞網站數據,要一個個寫 XPath 嗎?寫死我吧。如果有了智能化解析技術,在容忍一定錯誤的條件下,完成這個就是分分鐘的事情。
總之,如果我們能把這一塊也學會了,我們的爬蟲技術就會如虎添翼。
運維
這塊也是一個重頭戲。爬蟲和運維也是息息相關。
比如寫完一個爬蟲,怎樣去快速部署到 100 臺主機上跑起來。
比如怎么靈活地監控每個爬蟲的運行狀態。
比如爬蟲有處代碼改動,如何去快速更新。
比如怎樣監控一些爬蟲的占用內存、消耗的 CPU 狀況。
比如怎樣科學地控制爬蟲的定時運行、
比如爬蟲出現了問題,怎樣能及時收到通知,怎樣設置科學的報警機制。
這里面,部署大家各有各的方法,比如用 Ansible 當然可以。如果用 Scrapy 的話有 Scrapyd,然后配合上一些管理工具也能完成一些監控和定時任務。不過我現在用的更多是還是 Docker + Kubernetes,再加上 DevOps 一套,比如 GitHub Actions、Azure Pipelines、Jenkins 等等,快速實現分發和部署。
定時任務大家有的用 crontab,有的用 apscheduler,有的用管理工具,有的用 Kubernetes,我的話用 Kubernetes 就多一些了,定時任務也是很好實現。
至于監控的話,也有很多,專門的一些爬蟲管理工具自帶了一些監控和報警功能。一些云服務也帶了一些監控的功能。我用的是 Kubernetes + Prometheus + Grafana,什么 CPU、內存、運行狀態,一目了然,報警機制在 Grafana 里面配一下也很方便,支持 Webhook、郵件甚至某釘。
數據的存儲和監控,用 Kafka、Elasticsearch 個人感覺也挺方便的,我主要用的是后者,然后再和 Grafana 配合起來,數據爬取量、爬取速度等等監控也都一目了然。
結語
至此,爬蟲的一些涵蓋的知識點也就差不多了,怎么樣,梳理一下,是不是計算機網絡、編程基礎、前端開發、后端開發、App 開發與逆向、網絡安全、數據庫、運維、機器學習都涵蓋到了?上面總結的可以算是從爬蟲小白到爬蟲高手的路徑了,里面每個方向其實可研究的點非常多,每個點做精了,都會非常了不起。
爬蟲往往學著學著,就成為了一名全棧工程師或者全干工程師,因為你可能真的啥都會了。但是沒辦法啊,都是被爬蟲逼的啊,如果不是生活所困,誰愿意一身才華呢?
然而有了才華之后呢?摸摸頭頂,臥槽,我的頭發呢?
嗯,大家都懂的。
最后最重要的,珍愛生命、珍愛每一根頭發。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。