您好,登錄后才能下訂單哦!
從Excel到Python最常用的Pandas函數有哪些,相信很多沒有經驗的人對此束手無策,為此本文總結了問題出現的原因和解決方法,通過這篇文章希望你能解決這個問題。
常見的生成數據表的方法有兩種,第一種是導入外部數據,第二種是直接寫入數據。Excel中的“文件”菜單中提供了獲取外部數據的功能,支持數據庫和文本文件和頁面的多種數據源導入。
Python支持從多種類型的數據導入。在開始使用Python進行數據
導入前需要先導入pandas庫,為了方便起見,我們也同時導入numpy
庫.
import numpy as np import pandas as pd
導入外部數據
df=pd.DataFrame(pd.read_csv('name.csv',header=1)) df=pd.DataFrame(pd.read_Excel('name.xlsx'))c
里面有很多可選參數設置,例如列名稱、索引列、數據格式等
直接寫入數據
df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006], "date":pd.date_range('20130102', periods=6), "city":['Beijing ', 'SH', ' guangzhou ', 'Shen zhen', 'shanghai', 'BEIJING '], "age":[23,44,54,32,34,32], "category":['100-A','100-B','110-A','110-C','2 10-A','130-F'], "price":[1200,np.nan,2133,5433,np.nan,4432]}, columns =['id','date','city','category','age', 'price'])
數據表檢查的目的是了解數據表的整體情況,獲得數據表的關鍵信息、數據的概況,例如整個數據表的大小、所占空間、數據格式、是否有
空值和重復項和具體的數據內容,為后面的清洗和預處理做好準備。
1.數據維度(行列)
Excel中可以通過CTRL+向下的光標鍵,和CTRL+向右的光標鍵
來查看行號和列號。Python中使用shape函數來查看數據表的維度,也就是行數和列數。
df.shape
2.數據表信息
使用info函數查看數據表的整體信息,包括數據維度、列名稱、數據格式和所占空間等信息。
#數據表信息
df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 6 entries, 0 to 5 Data columns (total 6 columns): id 6 non-null int64 date 6 non-null datetime64[ns] city 6 non-null object category 6 non-null object age 6 non-null int64 price 4 non-null float64 dtypes: datetime64[ns](1), float64(1), int64(2), object(2) memory usage: 368.0+ bytes
3.查看數據格式
Excel中通過選中單元格并查看開始菜單中的數值類型來判斷數
據的格式。Python中使用dtypes函數來返回數據格式。
Dtypes是一個查看數據格式的函數,可以一次性查看數據表中所
有數據的格式,也可以指定一列來單獨查看
#查看數據表各列格式 df.dtypes id int64 date datetime64[ns] city object category object age int64 price float64 dtype: object #查看單列格式 df['B'].dtype dtype('int64')
4.查看空值
Excel中查看空值的方法是使用“定位條件”在“開始”目錄下的“查找和選擇”目錄.
Isnull是Python中檢驗空值的函數
#檢查數據空值 df.isnull()
#檢查特定列空值 df['price'].isnull()
5.查看唯一值
Excel中查看唯一值的方法是使用“條件格式”對唯一值進行顏色
標記。
Python中使用unique函數查看唯一值。
#查看city列中的唯一值 df['city'].unique() array(['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', ' BEIJING '], dtype=object)
6.查看數據表數值
Python中的Values函數用來查看數據表中的數值
#查看數據表的值 df.values
7.查看列名稱
Colums函數用來單獨查看數據表中的列名稱。
#查看列名稱 df.columns Index(['id', 'date', 'city', 'category', 'age', 'price'], dtype=' object')
8.查看前10行數據
Head函數用來查看數據表中的前N行數據
#查看前3行數據 df.head(3)
9.查看后10行數據
Tail行數與head函數相反,用來查看數據表中后N行的數據
#查看最后3行 df.tail(3)
本次的Python學習教程介紹對數據表中的問題進行清洗,包括對空值、大小寫問題、數據格式和重復值的處理。
1.處理空值(刪除或填充)
Excel中可以通過“查找和替換”功能對空值進行處理
Python中處理空值的方法比較靈活,可以使用 Dropna函數用來刪除數據表中包含空值的數據,也可以使用fillna函數對空值進行填充。
#刪除數據表中含有空值的行 df.dropna(how='any')
也可以使用數字對空值進行填充
#使用數字0填充數據表中空值 df.fillna(value=0)
使用price列的均值來填充NA字段,同樣使用fillna函數,在要填充的數值中使用mean函數先計算price列當前的均值,然后使用這個均值對NA進行填充。
#使用price均值對NA進行填充 df['price'].fillna(df['price'].mean()) Out[8]: 0 1200.0 1 3299.5 2 2133.0 3 5433.0 4 3299.5 5 4432.0 Name: price, dtype: float64
2.清理空格
字符中的空格也是數據清洗中一個常見的問題
#清除city字段中的字符空格 df['city']=df['city'].map(str.strip)
3.大小寫轉換
在英文字段中,字母的大小寫不統一也是一個常見的問題。
Excel中有UPPER,LOWER等函數,Python中也有同名函數用來解決
大小寫的問題。
#city列大小寫轉換 df['city']=df['city'].str.lower()
4.更改數據格式
Excel中通過“設置單元格格式”功能可以修改數據格式。
Python中通過astype函數用來修改數據格式。
#更改數據格式 df['price'].astype('int') 0 1200 1 3299 2 2133 3 5433 4 3299 5 4432 Name: price, dtype: int32
5.更改列名稱
Rename是更改列名稱的函數,我們將來數據表中的category列更改為category-size。
#更改列名稱 df.rename(columns={'category': 'category-size'})
6.刪除重復值
Excel的數據目錄下有“刪除重復項”的功能
Python中使用drop_duplicates函數刪除重復值
df['city'] 0 beijing 1 sh 2 guangzhou 3 shenzhen 4 shanghai 5 beijing Name: city, dtype: object
city列中beijing存在重復,分別在第一位和最后一位
drop_duplicates()函數刪除重復值
#刪除后出現的重復值 df['city'].drop_duplicates() 0 beijing 1 sh 2 guangzhou 3 shenzhen 4 shanghai Name: city, dtype: object
設置keep='last‘’參數后,與之前刪除重復值的結果相反,第一位
出現的beijing被刪除
#刪除先出現的重復值 df['city'].drop_duplicates(keep='last') 1 sh 2 guangzhou 3 shenzhen 4 shanghai 5 beijing Name: city, dtype: objec
7.數值修改及替換
Excel中使用“查找和替換”功能就可以實現數值的替換
Python中使用replace函數實現數據替換
附#數據替換 df['city'].replace('sh', 'shanghai') 0 beijing 1 shanghai 2 guangzhou 3 shenzhen 4 shanghai 5 beijing Name: city, d
看完上述內容,你們掌握從Excel到Python最常用的Pandas函數有哪些的方法了嗎?如果還想學到更多技能或想了解更多相關內容,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。