您好,登錄后才能下訂單哦!
這篇文章主要介紹獲取python運行輸出的數據并解析存為dataFrame的方法,文中介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們一定要看完!
在學習xg的 時候,想畫學習曲線,但無奈沒有沒有這個 evals_result_
AttributeError: 'Booster' object has no attribute 'evals_result_'
因為不是用的分類器或者回歸器,而且是使用的train而不是fit進行訓練的,看過源碼fit才有evals_result_這個,導致訓練后沒有這個,但是又想獲取學習曲線,因此肯定還需要獲取訓練數據。
運行的結果 上面有數據,于是就想自己解析屏幕的數據試一下,屏幕可以看到有我們迭代過程的數據,因此想直接獲取屏幕上的數據,思維比較low但是簡單粗暴。
接下來分兩步完成:
1) 獲取屏幕數據
import subprocess import pandas as pd top_info = subprocess.Popen(["python", "main.py"], stdout=subprocess.PIPE) out, err = top_info.communicate() out_info = out.decode('unicode-escape') lines=out_info.split('\n')
注:這里的main.py就是自己之前執行的python文件
2) 解析文件數據:
ln=0 lst=dict() for line in lines: if line.strip().startswith('[{}] train-auc:'.format(ln)): if ln not in lst.keys(): lst.setdefault(ln, {}) tmp = line.split('\t') t1=tmp[1].split(':') t2=tmp[2].split(':') if str(t1[0]) not in lst[ln].keys(): lst[ln].setdefault(str(t1[0]), 0) if str(t2[0]) not in lst[ln].keys(): lst[ln].setdefault(str(t2[0]), 0) lst[ln][str(t1[0])]=t1[1] lst[ln][str(t2[0])]=t2[1] ln+=1 json_df=pd.DataFrame(pd.DataFrame(lst).values.T, index=pd.DataFrame(lst).columns, columns=pd.DataFrame(lst).index).reset_index() json_df.columns=['numIter','eval-auc','train-auc'] print(json_df)
整體代碼:
import subprocess import pandas as pd top_info = subprocess.Popen(["python", "main.py"], stdout=subprocess.PIPE) out, err = top_info.communicate() out_info = out.decode('unicode-escape') lines=out_info.split('\n') ln=0 lst=dict() for line in lines: if line.strip().startswith('[{}] train-auc:'.format(ln)): if ln not in lst.keys(): lst.setdefault(ln, {}) tmp = line.split('\t') t1=tmp[1].split(':') t2=tmp[2].split(':') if str(t1[0]) not in lst[ln].keys(): lst[ln].setdefault(str(t1[0]), 0) if str(t2[0]) not in lst[ln].keys(): lst[ln].setdefault(str(t2[0]), 0) lst[ln][str(t1[0])]=t1[1] lst[ln][str(t2[0])]=t2[1] ln+=1 json_df=pd.DataFrame(pd.DataFrame(lst).values.T, index=pd.DataFrame(lst).columns, columns=pd.DataFrame(lst).index).reset_index() json_df.columns=['numIter','eval-auc','train-auc'] print(json_df)
看下效果:
以上是獲取python運行輸出的數據并解析存為dataFrame方法的所有內容,感謝各位的閱讀!希望分享的內容對大家有幫助,更多相關知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。