您好,登錄后才能下訂單哦!
這篇文章主要介紹ImageDataGenerator和flow()有什么用,文中介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們一定要看完!
ImageDataGenerator的參數自己看文檔
from keras.preprocessing import image import numpy as np X_train=np.ones((3,123,123,1)) Y_train=np.array([[1],[2],[2]]) generator=image.ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-6, rotation_range=180, width_shift_range=0.2, height_shift_range=0.2, shear_range=0, zoom_range=0.001, channel_shift_range=0, fill_mode='nearest', cval=0., horizontal_flip=True, vertical_flip=True, rescale=None, preprocessing_function=None, data_format='channels_last') a=generator.flow(X_train,Y_train,batch_size=20)#生成的是一個迭代器,可直接用于for循環 ''' batch_size如果小于X的第一維m,next生成的多維矩陣的第一維是為batch_size,輸出是從輸入中隨機選取batch_size個數據 batch_size如果大于X的第一維m,next生成的多維矩陣的第一維是m,輸出是m個數據,不過順序隨機 ,輸出的X,Y是一一對對應的 如果要直接用于tf.placeholder(),要求生成的矩陣和要與tf.placeholder相匹配 ''' X,Y=next(a) print(Y) X,Y=next(a) print(Y) X,Y=next(a) print(Y) X,Y=next(a)
輸出
[[2] [1] [2]] [[2] [2] [1]] [[2] [2] [1]] [[2] [2] [1]]
補充知識:tensorflow 與keras 混用之坑
在使用tensorflow與keras混用是model.save 是正常的但是在load_model的時候報錯了在這里mark 一下
其中錯誤為:TypeError: tuple indices must be integers, not list
再一一番百度后無結果,上谷歌后找到了類似的問題。但是是一對鳥文不知道什么東西(翻譯后發現是俄文)。后來谷歌翻譯了一下找到了解決方法。故將原始問題文章貼上來警示一下
原訓練代碼
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense #Каталог с данными для обучения train_dir = 'train' # Каталог с данными для проверки val_dir = 'val' # Каталог с данными для тестирования test_dir = 'val' # Размеры изображения img_width, img_height = 800, 800 # Размерность тензора на основе изображения для входных данных в нейронную сеть # backend Tensorflow, channels_last input_shape = (img_width, img_height, 3) # Количество эпох epochs = 1 # Размер мини-выборки batch_size = 4 # Количество изображений для обучения nb_train_samples = 300 # Количество изображений для проверки nb_validation_samples = 25 # Количество изображений для тестирования nb_test_samples = 25 model = Sequential() model.add(Conv2D(32, (7, 7), padding="same", input_shape=input_shape)) model.add(BatchNormalization()) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(10, 10))) model.add(Conv2D(64, (5, 5), padding="same")) model.add(BatchNormalization()) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(10, 10))) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer="Nadam", metrics=['accuracy']) print(model.summary()) datagen = ImageDataGenerator(rescale=1. / 255) train_generator = datagen.flow_from_directory( train_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') val_generator = datagen.flow_from_directory( val_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') test_generator = datagen.flow_from_directory( test_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') model.fit_generator( train_generator, steps_per_epoch=nb_train_samples // batch_size, epochs=epochs, validation_data=val_generator, validation_steps=nb_validation_samples // batch_size) print('Сохраняем сеть') model.save("grib.h6") print("Сохранение завершено!")
模型載入
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense from keras.models import load_model print("Загрузка сети") model = load_model("grib.h6") print("Загрузка завершена!")
報錯
/usr/bin/python3.5 /home/disk2/py/neroset/do.py /home/mama/.local/lib/python3.5/site-packages/h6py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters Using TensorFlow backend. Загрузка сети Traceback (most recent call last): File "/home/disk2/py/neroset/do.py", line 13, in <module> model = load_model("grib.h6") File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 243, in load_model model = model_from_config(model_config, custom_objects=custom_objects) File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 317, in model_from_config return layer_module.deserialize(config, custom_objects=custom_objects) File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize printable_module_name='layer') File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 144, in deserialize_keras_object list(custom_objects.items()))) File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 1350, in from_config model.add(layer) File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 492, in add output_tensor = layer(self.outputs[0]) File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 590, in __call__ self.build(input_shapes[0]) File "/usr/local/lib/python3.5/dist-packages/keras/layers/normalization.py", line 92, in build dim = input_shape[self.axis] TypeError: tuple indices must be integers or slices, not list Process finished with exit code 1
戰斗種族解釋
убераю BatchNormalization всё работает хорошо. Не подскажите в чём ошибкаВыяснил что сохранение keras и нормализация tensorflow не работают вместе нужно просто изменить строку импорта.(譯文:整理BatchNormalization一切正常。 不要告訴我錯誤是什么?我發現保存keras和規范化tensorflow不能一起工作;只需更改導入字符串即可。)
強調文本 強調文本
keras.preprocessing.image import ImageDataGenerator keras.models import Sequential keras.layers import Conv2D, MaxPooling2D, BatchNormalization keras.layers import Activation, Dropout, Flatten, Dense
以上是ImageDataGenerator和flow()有什么用的所有內容,感謝各位的閱讀!希望分享的內容對大家有幫助,更多相關知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。