您好,登錄后才能下訂單哦!
MySQL中的B-Tree引索與Hash引索有區別嗎?很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細講解,有這方面需求的人可以來學習下,希望你能有所收獲。
MySQL中B-Tree引索和Hash引索的區別:
1、B-Tree引索支持最左前綴匹配原則,而Hash引索不支持;
2、MyISAM和InnoDB都支持B-Tree引索,而Hash引索只有Memory和NDB引擎索引支持
Hash索引
Hash,一般翻譯做"散列",也有直接音譯為"哈希"的,就是把任意長度的輸入(又叫做預映射, pre-image),通過散列算法,變換成固定長度的輸出,該輸出就是散列值。這種轉換是一種壓縮映射,也就是,散列值的空間通常遠小于輸入的空間,不同的輸入可能會散列成相同的輸出,所以不可能從散列值來唯一的確定輸入值。簡單的說就是一種將任意長度的消息壓縮到某一固定長度的消息摘要的函數。
可能很多人又有疑問了,既然 Hash 索引的效率要比 B-Tree 高很多,為什么大家不都用 Hash 索引而還要使用 B-Tree 索引呢?任何事物都是有兩面性的,Hash 索引也一樣,雖然 Hash 索引效率高,但是 Hash 索引本身由于其特殊性也帶來了很多限制和弊端,主要有以下這些。
(1)Hash 索引僅僅能滿足"=","IN"和"<=>"查詢,不能使用范圍查詢。
由于 Hash 索引比較的是進行 Hash 運算之后的 Hash 值,所以它只能用于等值的過濾,不能用于基于范圍的過濾,因為經過相應的 Hash 算法處理之后的 Hash 值的大小關系,并不能保證和Hash運算前完全一樣。
(2)Hash 索引無法被用來避免數據的排序操作。
由于 Hash 索引中存放的是經過 Hash 計算之后的 Hash 值,而且Hash值的大小關系并不一定和 Hash 運算前的鍵值完全一樣,所以數據庫無法利用索引的數據來避免任何排序運算;
(3)Hash 索引不能利用部分索引鍵查詢。
對于組合索引,Hash 索引在計算 Hash 值的時候是組合索引鍵合并后再一起計算 Hash 值,而不是單獨計算 Hash 值,所以通過組合索引的前面一個或幾個索引鍵進行查詢的時候,Hash 索引也無法被利用。
(4)Hash 索引在任何時候都不能避免表掃描。
前面已經知道,Hash 索引是將索引鍵通過 Hash 運算之后,將 Hash運算結果的 Hash 值和所對應的行指針信息存放于一個 Hash 表中,由于不同索引鍵存在相同 Hash 值,所以即使取滿足某個 Hash 鍵值的數據的記錄條數,也無法從 Hash 索引中直接完成查詢,還是要通過訪問表中的實際數據進行相應的比較,并得到相應的結果。
(5)Hash 索引遇到大量Hash值相等的情況后性能并不一定就會比B-Tree索引高。
對于選擇性比較低的索引鍵,如果創建 Hash 索引,那么將會存在大量記錄指針信息存于同一個 Hash 值相關聯。這樣要定位某一條記錄時就會非常麻煩,會浪費多次表數據的訪問,而造成整體性能低下。
B-Tree索引
B-tree(多路搜索樹,并不是二叉的)是一種常見的數據結構。使用B-tree結構可以顯著減少定位記錄時所經歷的中間過程,從而加快存取速度。按照翻譯,B 通常認為是Balance的簡稱。這個數據結構一般用于數據庫的索引,綜合效率較高。
一般來說, MySQL 中的 B-Tree 索引的物理文件大多都是以 Balance Tree 的結構來存儲的,也就是所有實際需要的數據都存放于 Tree 的 Leaf Node ,而且到任何一個 Leaf Node 的最短路徑的長度都是完全相同的,所以我們大家都稱之為 B-Tree 索引當然,可能各種數據庫(或 MySQL 的各種存儲引擎)在存放自己的 B-Tree 索引的時候會對存儲結構稍作改造。如 Innodb 存儲引擎的 B-Tree 索引實際使用的存儲結構實際上是 B+Tree ,也就是在 B-Tree 數據結構的基礎上做了很小的改造,在每一個
Leaf Node 上面出了存放索引鍵的相關信息之外,還存儲了指向與該 Leaf Node 相鄰的后一個 LeafNode 的指針信息,這主要是為了加快檢索多個相鄰 Leaf Node 的效率考慮。
看完上述內容是否對您有幫助呢?如果還想對相關知識有進一步的了解或閱讀更多相關文章,請關注億速云行業資訊頻道,感謝您對億速云的支持。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。