您好,登錄后才能下訂單哦!
這篇文章給大家分享的是有關python中pipeline的使用方法的內容。小編覺得挺實用的,因此分享給大家做個參考。一起跟隨小編過來看看吧。
Python的sklearn.pipeline.Pipeline()函數可以把多個“處理數據的節點”按順序打包在一起,數據在前一個節點處理之后的結果,轉到下一個節點處理。除了最后一個節點外,其他節點都必須實現'fit()'和'transform()'方法, 最后一個節點需要實現fit()方法即可。當訓練樣本數據送進Pipeline進行處理時, 它會逐個調用節點的fit()和transform()方法,然后點用最后一個節點的fit()方法來擬合數據。
例如
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline def polynomial_model(degree = 1): polynomial_features = PolynomialFeatures(degree = degree, include_bias = False) linear_regression = LinearRegression() pipeline = Pipeline([('polynomial_features', polynomial_features), ('linear_regression', linear_regression)]) return pipeline
感謝各位的閱讀!關于python中pipeline的使用方法就分享到這里了,希望以上內容可以對大家有一定的幫助,讓大家可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。