您好,登錄后才能下訂單哦!
本文實例講述了Java ThreadLocal用法。分享給大家供大家參考,具體如下:
ThreadLocal實現了Java中線程局部變量。所謂線程局部變量就是保存在每個線程中獨有的一些數據,我們知道一個進程中的所有線程是共享該進程的資源的,線程對進程中的資源進行修改會反應到該進程中的其他線程上,如果我們希望一個線程對資源的修改不會影響到其他線程,那么就需要將該資源設為線程局部變量的形式。
如下示例所示,定義兩個ThreadLocal變量,然后分別在主線程和子線程中對線程局部變量進行修改,然后分別獲取線程局部變量的值:
public class ThreadLocalTest { private static ThreadLocal<String> threadLocal1 = ThreadLocal.withInitial(() -> "threadLocal1 first value"); private static ThreadLocal<String> threadLocal2 = ThreadLocal.withInitial(() -> "threadLocal2 first value"); public static void main(String[] args) throws Exception{ Thread thread = new Thread(() -> { System.out.println("================" + Thread.currentThread().getName() + " enter================="); // 子線程中打印出初始值 printThreadLocalInfo(); // 子線程中設置新值 threadLocal1.set("new thread threadLocal1 value"); threadLocal2.set("new thread threadLocal2 value"); // 子線程打印出新值 printThreadLocalInfo(); System.out.println("================" + Thread.currentThread().getName() + " exit================="); }); thread.start(); // 等待新線程執行 thread.join(); // 在main線程打印threadLocal1和threadLocal2,驗證子線程對這兩個變量的修改是否會影響到main線程中的這兩個值 printThreadLocalInfo(); // 在main線程中給threadLocal1和threadLocal2設置新值 threadLocal1.set("main threadLocal1 value"); threadLocal2.set("main threadLocal2 value"); // 驗證main線程中這兩個變量是否為新值 printThreadLocalInfo(); } private static void printThreadLocalInfo() { System.out.println(Thread.currentThread().getName() + ": " + threadLocal1.get()); System.out.println(Thread.currentThread().getName() + ": " + threadLocal2.get()); } }
運行結果如下:
================Thread-0 enter================= Thread-0: threadLocal1 first value Thread-0: threadLocal2 first value Thread-0: new thread threadLocal1 value Thread-0: new thread threadLocal2 value ================Thread-0 exit================= main: threadLocal1 first value main: threadLocal2 first value main: main threadLocal1 value main: main threadLocal2 value
如果子線程對threadLocal1
和threadLocal2
的修改會影響到main線程中的threadLocal1
和threadLocal2
,那么在main線程第一次printThreadLocalInfo();
打印出的應該是修改后的新值,即為new thread threadLocal1 value
和new thread threadLocal2 value
和,但實際打印結果并不是這樣,說明在新線程中對threadLocal1
和threadLocal2
的修改并不會影響到main線程中的這兩個變量,似乎main線程中的threadLocal1
和threadLocal2
作用域僅局限于main線程,新線程中的threadLocal1
和threadLocal2
作用域僅局限于新線程,這就是線程局部變量的由來。
如下圖所示
每個線程對象里會持有一個java.lang.ThreadLocal.ThreadLocalMap
類型的threadLocals
成員變量,而ThreadLocalMap
里有一個java.lang.ThreadLocal.ThreadLocalMap.Entry[]
類型的table
成員,這是一個數組,數組元素是Entry
類型,Entry
中相當于有一個key
和value
,key
指向所有線程共享的java.lang.ThreadLocal
對象,value
指向各線程私有的變量,這樣保證了線程局部變量的隔離性,每個線程只是讀取和修改自己所持有的那個value對象,相互之間沒有影響。
源碼包括ThreadLocal
和ThreadLocalMap
,ThreadLocalMap
是ThreadLocal
內定義的一個靜態內部類,用于存儲實際的數據。當調用ThreadLocal
的get
或者set
方法時都有可能創建當前線程的threadLocals
成員(ThreadLocalMap
類型)。
ThreadLocal的get方法定義如下
/** * Returns the value in the current thread's copy of this * thread-local variable. If the variable has no value for the * current thread, it is first initialized to the value returned * by an invocation of the {@link #initialValue} method. * * @return the current thread's value of this thread-local */ public T get() { // 獲取當前線程 Thread t = Thread.currentThread(); // 獲取當前線程的threadLocals成員變量,這是一個ThreadLocalMap ThreadLocalMap map = getMap(t); // threadLocals不為null則直接從threadLocals中取出ThreadLocal // 對象對應的值 if (map != null) { // 從map中獲取當前ThreadLocal對象對應Entry對象 ThreadLocalMap.Entry e = map.getEntry(this); if (e != null) { // 獲取ThreadLocal對象對應的value值 @SuppressWarnings("unchecked") T result = (T)e.value; return result; } } // threadLocals為null,則需要創建ThreadLocalMap對象并賦給 // threadLocals,將當前ThreadLocal對象作為key,調用initialValue // 獲得的初始值作為value,放置到threadLocals的entry中; // 或者threadLocals不為null,但在threadLocals中未 // 找到當前ThreadLocal對象對應的entry,則需要向threadLocals添加新的 // entry,該entry以當前的ThreadLocal對象作為key,調用initialValue // 獲得的值作為value return setInitialValue(); } /** * Get the map associated with a ThreadLocal. Overridden in * InheritableThreadLocal. * * @param t the current thread * @return the map */ ThreadLocalMap getMap(Thread t) { return t.threadLocals; }
當Thread
的threadLocals
為null,或者在Thread
的threadLocals
中未找到當前ThreadLocal對象對應的entry,則進入到setInitialValue
方法;否則進入到ThreadLocalMap
的getEntry
方法。
定義如下:
private T setInitialValue() { // 獲取初始值,如果我們在定義ThreadLocal對象時實現了ThreadLocal // 的initialValue方法,就會調用我們自定義的方法來獲取初始值,否則 // 使用initialValue的默認實現返回null值 T value = initialValue(); Thread t = Thread.currentThread(); // 獲取當前線程的threadLocals成員 ThreadLocalMap map = getMap(t); if (map != null) { // 若threadLocals存在則將ThreadLocal對象對應的value設置為初始值 map.set(this, value); } else { // 否則創建threadLocals對象并設置初始值 createMap(t, value); } if (this instanceof TerminatingThreadLocal) { TerminatingThreadLocal.register((TerminatingThreadLocal<?>) this); } return value; }
createMap
方法實現
/** * Create the map associated with a ThreadLocal. Overridden in * InheritableThreadLocal. * * @param t the current thread * @param firstValue value for the initial entry of the map */ void createMap(Thread t, T firstValue) { // 創建一個ThreadLocalMap對象,用當前ThreadLocal對象和初始值value來 // 構造ThreadLocalMap中table的第一個entry。ThreadLocalMap對象賦 // 給線程的threadLocals成員 t.threadLocals = new ThreadLocalMap(this, firstValue); }
ThreadLocalMap
的構造方法定義如下:
/** * Construct a new map initially containing (firstKey, firstValue). * ThreadLocalMaps are constructed lazily, so we only create * one when we have at least one entry to put in it. */ ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) { // 構造table數組,數組大小為INITIAL_CAPACITY table = new Entry[INITIAL_CAPACITY]; // 計算key(ThreadLocal對象)在table中的索引 int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1); // 用ThreadLocal對象和value來構造entry對象,并放到table的第i個位置 table[i] = new Entry(firstKey, firstValue); size = 1; // 設置table的閾值,當table中元素個數超過該閾值時需要對table // 進行resize,通常在調用ThreadLocalMap的set方法時會發生resize setThreshold(INITIAL_CAPACITY); } /** * Set the resize threshold to maintain at worst a 2/3 load factor. */ private void setThreshold(int len) { threshold = len * 2 / 3; }
這里firstKey.threadLocalHashCode
是ThreadLocal中定義的一個hashcode,使用該hashcode進行hash運算從而找到該ThreadLocal對象對應的entry在table中的索引。
定義如下:
/** * Get the entry associated with key. This method * itself handles only the fast path: a direct hit of existing * key. It otherwise relays to getEntryAfterMiss. This is * designed to maximize performance for direct hits, in part * by making this method readily inlinable. * * @param key the thread local object * @return the entry associated with key, or null if no such */ private Entry getEntry(ThreadLocal<?> key) { // 根據ThreadLocal的hashcode計算該ThreadLocal對象在table中的位置 int i = key.threadLocalHashCode & (table.length - 1); Entry e = table[i]; // e為null則table不存在key對應的entry; // e.get() != key 可能是由于hash沖突導致key對應的entry在table // 的另外一個位置,需要繼續查找 if (e != null && e.get() == key) return e; else // e==null或者e.get() != key 繼續查找key對應的entry return getEntryAfterMiss(key, i, e); }
getEntryAfterMiss
方法定義如下:
/** * Version of getEntry method for use when key is not found in * its direct hash slot. * * @param key the thread local object * @param i the table index for key's hash code * @param e the entry at table[i] * @return the entry associated with key, or null if no such */ private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e){ Entry[] tab = table; int len = tab.length; // 從table的第i個位置一直往后找,直到找到鍵為key的entry為止 while (e != null) { ThreadLocal<?> k = e.get(); // 若k==key,則找到了entry if (k == key) return e; // k == null 需要刪除該entry if (k == null) expungeStaleEntry(i); // k != key && k != null 繼續往后尋找,nextIndex就是取(i+1) // 即table中第(i+1)個位置的entry else i = nextIndex(i, len); e = tab[i]; } return null; }
expungeStaleEntry
方法刪除key為null的entry,刪除后對staleSlot位置的entry和其后第一個為null的entry之間的entry進行一個rehash操作,rehash的目的是降低table發生碰撞的概率:
/** * Expunge a stale entry by rehashing any possibly colliding entries * lying between staleSlot and the next null slot. This also expunges * any other stale entries encountered before the trailing null. See * Knuth, Section 6.4 * * @param staleSlot index of slot known to have null key * @return the index of the next null slot after staleSlot * (all between staleSlot and this slot will have been checked * for expunging). */ private int expungeStaleEntry(int staleSlot) { Entry[] tab = table; int len = tab.length; // expunge entry at staleSlot // 刪除staleSlot位置的entry tab[staleSlot].value = null; tab[staleSlot] = null; // table中元素個數減一 size--; // Rehash until we encounter null // 將table中staleSlot處entry和下一個為null的entry之間的 // entry重新進行hash放置到新的位置 // 遇到的entry的key為null則刪除該entry Entry e; int i; for (i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) { // e是下一個entry ThreadLocal<?> k = e.get(); if (k == null) { // 若entry的key為null,則刪除 e.value = null; tab[i] = null; size--; } else { // entry的key不為null,需要將entry放到新的位置 int h = k.threadLocalHashCode & (len - 1); if (h != i) { tab[i] = null; // Unlike Knuth 6.4 Algorithm R, we must scan until // null because multiple entries could have been stale. // tab[h]不為null則發生沖突,繼續尋找下一個位置 while (tab[h] != null) h = nextIndex(h, len); tab[h] = e; } } } return i; }
ThreadLocal的set方法定義如下:
/** * Sets the current thread's copy of this thread-local variable * to the specified value. Most subclasses will have no need to * override this method, relying solely on the {@link #initialValue} * method to set the values of thread-locals. * * @param value the value to be stored in the current thread's copy of * this thread-local. */ public void set(T value) { Thread t = Thread.currentThread(); // 獲取當前線程的threadLocals ThreadLocalMap map = getMap(t); // threadLocals不為null直接設置新值 if (map != null) { map.set(this, value); } else { // threadLocals為null則需要創建ThreadLocalMap對象并賦給 // Thread的threadLocals成員 createMap(t, value); } }
createMap
前面已經分析過,接下來分析ThreadLocalMap的set
方法
ThreadLocalMap的set方法定義如下,將當前的ThreadLocal對象作為key,傳入的value為值,用key和value創建entry,放到table中適當的位置:
/** * Set the value associated with key. * * @param key the thread local object * @param value the value to be set */ private void set(ThreadLocal<?> key, Object value) { // We don't use a fast path as with get() because it is at // least as common to use set() to create new entries as // it is to replace existing ones, in which case, a fast // path would fail more often than not. Entry[] tab = table; int len = tab.length; // 用key計算entry在table中的位置 int i = key.threadLocalHashCode & (len-1); // tab[i]不為null的話,則第i個位置已經存在有效的entry,需要繼續 // 往后尋找新的位置 for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) { ThreadLocal<?> k = e.get(); // 找到與key相同的entry,直接更新value的值 if (k == key) { e.value = value; return; } // 遇到key為null的entry,刪除該entry if (k == null) { replaceStaleEntry(key, value, i); return; } } // 此時第i個位置entry為null,將新entry放置到這個位置 tab[i] = new Entry(key, value); int sz = ++size; // 試圖清除無效的entry,若清除失敗并且table中有效entry個數 // 大于threshold,這進行rehash操作 if (!cleanSomeSlots(i, sz) && sz >= threshold) rehash(); }
replaceStaleEntry
的作用是用set方法傳過來的key和value構造entry,將這個entry放到staleSlot后面的某個位置:
/** * Replace a stale entry encountered during a set operation * with an entry for the specified key. The value passed in * the value parameter is stored in the entry, whether or not * an entry already exists for the specified key. * * As a side effect, this method expunges all stale entries in the * "run" containing the stale entry. (A run is a sequence of entries * between two null slots.) * * @param key the key * @param value the value to be associated with key * @param staleSlot index of the first stale entry encountered while * searching for key. */ private void replaceStaleEntry(ThreadLocal<?> key, Object value, int staleSlot) { Entry[] tab = table; int len = tab.length; Entry e; // Back up to check for prior stale entry in current run. // We clean out whole runs at a time to avoid continual // incremental rehashing due to garbage collector freeing // up refs in bunches (i.e., whenever the collector runs). // 從staleSlot往前找到第一個key為null的entry的位置 int slotToExpunge = staleSlot; for (int i = prevIndex(staleSlot, len); (e = tab[i]) != null; i = prevIndex(i, len)) if (e.get() == null) slotToExpunge = i; // Find either the key or trailing null slot of run, whichever // occurs first // 從staleSlot位置往后尋找 for (int i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) { ThreadLocal<?> k = e.get(); // If we find key, then we need to swap it // with the stale entry to maintain hash table order. // The newly stale slot, or any other stale slot // encountered above it, can then be sent to expungeStaleEntry // to remove or rehash all of the other entries in run. // 若k與key相同,則直接更新value if (k == key) { e.value = value; // 將原來staleSlot位置的entry放置到第i個位置,此時tab[i]處的entry的key為null tab[i] = tab[staleSlot]; tab[staleSlot] = e; // Start expunge at preceding stale entry if it exists // 從staleSlot處往前未找到key為null的entry if (slotToExpunge == staleSlot) // tab[i]處entry的key為null,也即tab[slotToExpunge]處entry的key為null slotToExpunge = i; // 清除slotToExpunge位置的entry并進行rehash操作..... cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); return; } // If we didn't find stale entry on backward scan, the // first stale entry seen while scanning for key is the // first still present in the run. if (k == null && slotToExpunge == staleSlot) slotToExpunge = i; } // If key not found, put new entry in stale slot tab[staleSlot].value = null; tab[staleSlot] = new Entry(key, value); // If there are any other stale entries in run, expunge them if (slotToExpunge != staleSlot) cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); }
以下源碼只可意會,不可言傳…不再做說明
cleanSomeSlots
方法:
/** * Heuristically scan some cells looking for stale entries. * This is invoked when either a new element is added, or * another stale one has been expunged. It performs a * logarithmic number of scans, as a balance between no * scanning (fast but retains garbage) and a number of scans * proportional to number of elements, that would find all * garbage but would cause some insertions to take O(n) time. * * @param i a position known NOT to hold a stale entry. The * scan starts at the element after i. * * @param n scan control: {@code log2(n)} cells are scanned, * unless a stale entry is found, in which case * {@code log2(table.length)-1} additional cells are scanned. * When called from insertions, this parameter is the number * of elements, but when from replaceStaleEntry, it is the * table length. (Note: all this could be changed to be either * more or less aggressive by weighting n instead of just * using straight log n. But this version is simple, fast, and * seems to work well.) * * @return true if any stale entries have been removed. */ private boolean cleanSomeSlots(int i, int n) { boolean removed = false; Entry[] tab = table; int len = tab.length; do { i = nextIndex(i, len); Entry e = tab[i]; if (e != null && e.get() == null) { n = len; removed = true; i = expungeStaleEntry(i); } } while ( (n >>>= 1) != 0); return removed; }
rehash
方法:
/** * Re-pack and/or re-size the table. First scan the entire * table removing stale entries. If this doesn't sufficiently * shrink the size of the table, double the table size. */ private void rehash() { expungeStaleEntries(); // Use lower threshold for doubling to avoid hysteresis if (size >= threshold - threshold / 4) resize(); }
expungeStaleEntries
方法:
/** * Expunge all stale entries in the table. */ private void expungeStaleEntries() { Entry[] tab = table; int len = tab.length; for (int j = 0; j < len; j++) { Entry e = tab[j]; if (e != null && e.get() == null) expungeStaleEntry(j); } }
resize
方法:
/** * Double the capacity of the table. */ private void resize() { Entry[] oldTab = table; int oldLen = oldTab.length; int newLen = oldLen * 2; Entry[] newTab = new Entry[newLen]; int count = 0; for (Entry e : oldTab) { if (e != null) { ThreadLocal<?> k = e.get(); if (k == null) { e.value = null; // Help the GC } else { int h = k.threadLocalHashCode & (newLen - 1); while (newTab[h] != null) h = nextIndex(h, newLen); newTab[h] = e; count++; } } } setThreshold(newLen); size = count; table = newTab; }
更多java相關內容感興趣的讀者可查看本站專題:《Java進程與線程操作技巧總結》、《Java數據結構與算法教程》、《Java操作DOM節點技巧總結》、《Java文件與目錄操作技巧匯總》和《Java緩存操作技巧匯總》
希望本文所述對大家java程序設計有所幫助。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。