91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

keras中loss與val_loss的關系是什么?

發布時間:2020-06-23 13:35:01 來源:億速云 閱讀:695 作者:清晨 欄目:開發技術

不懂keras中loss與val_loss的關系是什么??其實想解決這個問題也不難,下面讓小編帶著大家一起學習怎么去解決,希望大家閱讀完這篇文章后大所收獲。

loss函數如何接受輸入值

keras封裝的比較厲害,官網給的例子寫的云里霧里,

在stackoverflow找到了答案

You can wrap the loss function as a inner function and pass your input tensor to it (as commonly done when passing additional arguments to the loss function).

def custom_loss_wrapper(input_tensor):
 def custom_loss(y_true, y_pred):
  return K.binary_crossentropy(y_true, y_pred) + K.mean(input_tensor)
 return custom_loss
input_tensor = Input(shape=(10,))
hidden = Dense(100, activation='relu')(input_tensor)
out = Dense(1, activation='sigmoid')(hidden)
model = Model(input_tensor, out)
model.compile(loss=custom_loss_wrapper(input_tensor), optimizer='adam')

You can verify that input_tensor and the loss value will change as different X is passed to the model.

X = np.random.rand(1000, 10)
y = np.random.randint(2, size=1000)
model.test_on_batch(X, y) # => 1.1974642

X *= 1000
model.test_on_batch(X, y) # => 511.15466

fit_generator

fit_generator ultimately calls train_on_batch which allows for x to be a dictionary.

Also, it could be a list, in which casex is expected to map 1:1 to the inputs defined in Model(input=[in1, …], …)

### generator
yield [inputX_1,inputX_2],y
### model
model = Model(inputs=[inputX_1,inputX_2],outputs=...)

補充知識:學習keras時對loss函數不同的選擇,則model.fit里的outputs可以是one_hot向量,也可以是整形標簽

我就廢話不多說了,大家還是直接看代碼吧~

from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt

print(tf.__version__)
fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
    'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
# plt.figure()
# plt.imshow(train_images[0])
# plt.colorbar()
# plt.grid(False)
# plt.show()

train_images = train_images / 255.0
test_images = test_images / 255.0

# plt.figure(figsize=(10,10))
# for i in range(25):
#  plt.subplot(5,5,i+1)
#  plt.xticks([])
#  plt.yticks([])
#  plt.grid(False)
#  plt.imshow(train_images[i], cmap=plt.cm.binary)
#  plt.xlabel(class_names[train_labels[i]])
# plt.show()

model = keras.Sequential([
 keras.layers.Flatten(input_shape=(28, 28)),
 keras.layers.Dense(128, activation='relu'),
 keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
    loss='categorical_crossentropy', 
    #loss = 'sparse_categorical_crossentropy' 則之后的label不需要變成one_hot向量,直接使用整形標簽即可
    metrics=['accuracy'])
one_hot_train_labels = keras.utils.to_categorical(train_labels, num_classes=10)

model.fit(train_images, one_hot_train_labels, epochs=10)

one_hot_test_labels = keras.utils.to_categorical(test_labels, num_classes=10)
test_loss, test_acc = model.evaluate(test_images, one_hot_test_labels)

print('\nTest accuracy:', test_acc)

# predictions = model.predict(test_images)
# predictions[0]
# np.argmax(predictions[0])
# test_labels[0]

loss若為loss=‘categorical_crossentropy', 則fit中的第二個輸出必須是一個one_hot類型,

而若loss為loss = ‘sparse_categorical_crossentropy' 則之后的label不需要變成one_hot向量,直接使用整形標簽即可

感謝你能夠認真閱讀完這篇文章,希望小編分享keras中loss與val_loss的關系是什么?內容對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,遇到問題就找億速云,詳細的解決方法等著你來學習!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

九寨沟县| 淮阳县| 丽江市| 奈曼旗| 安达市| 奉新县| 巴彦县| 外汇| 利川市| 浮梁县| 哈巴河县| 西平县| 拜城县| 九江县| 盈江县| 沙河市| 公安县| 桃园市| 四子王旗| 焉耆| 溆浦县| 玛沁县| 二手房| 五莲县| 西青区| 都安| 阳城县| 土默特右旗| 镇平县| 保靖县| 东阳市| 闽清县| 包头市| 新疆| 蛟河市| 梅河口市| 五台县| 祁东县| 阳朔县| 平乡县| 雷山县|